| dc.contributor.author | MOSES K. MARAKA , JOHN W. MATUYA , EDWARD M. NJUGUNA, LEWIS N. NYAGA | |
| dc.date.accessioned | 2025-12-03T09:33:54Z | |
| dc.date.available | 2025-12-03T09:33:54Z | |
| dc.date.issued | 2024-07 | |
| dc.identifier.issn | 2456-8880 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/18462 | |
| dc.description.abstract | In this paper, we determine the transitivity of the product action of finite alternating groups on the Cartesian product of finite ordered sets of 𝜸- tuples. Transitivity action has been determined using the Orbit-stabilizer theorem, by showing that the length of the orbit (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, β¦ , 𝒑𝒎β𝟏, 𝒑𝒎) in 𝑨𝒏𝟏 Γ 𝑨𝒏𝟐 Γ β¦ Γ 𝑨𝒏𝒎β𝟏 Γ 𝑨𝒏𝒎 , (𝒏 β 𝜸 β₯ 𝟐) acting on 𝑷𝟏 [𝜸] Γ 𝑷𝟐 [𝜸] Γ β¦ Γ 𝑷𝒎β𝟏 [𝜸] Γ 𝑷𝒎 [𝜸] is equivalent to the cardinality of 𝑷𝟏 [𝜸] Γ 𝑷𝟐 [𝜸] Γ β¦ Γ 𝑷𝒎β𝟏 [𝜸] Γ 𝑷𝒎 [𝜸] to imply transitivity. | en_US |
| dc.language.iso | en | en_US |
| dc.subject | Orbits; stabilizer; transitive group; ordered sets of 𝜸-tuples; cartesian product; fixed point. | en_US |
| dc.title | Transitivity of the Product Action of Finite Alternating Groups on Cartesian Product of Finite Ordered Sets 0f Ξ³Tuples | en_US |
| dc.type | Article | en_US |