MMARAU Institutional Repository

Transitivity of the Product Action of Finite Alternating Groups on Cartesian Product of Finite Ordered Sets 0f Ξ³Tuples

Show simple item record

dc.contributor.author MOSES K. MARAKA , JOHN W. MATUYA , EDWARD M. NJUGUNA, LEWIS N. NYAGA
dc.date.accessioned 2025-12-03T09:33:54Z
dc.date.available 2025-12-03T09:33:54Z
dc.date.issued 2024-07
dc.identifier.issn 2456-8880
dc.identifier.uri http://hdl.handle.net/123456789/18462
dc.description.abstract In this paper, we determine the transitivity of the product action of finite alternating groups on the Cartesian product of finite ordered sets of 𝜸- tuples. Transitivity action has been determined using the Orbit-stabilizer theorem, by showing that the length of the orbit (𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒎βˆ’𝟏, 𝒑𝒎) in 𝑨𝒏𝟏 Γ— 𝑨𝒏𝟐 Γ— … Γ— 𝑨𝒏𝒎βˆ’𝟏 Γ— 𝑨𝒏𝒎 , (𝒏 βˆ’ 𝜸 β‰₯ 𝟐) acting on 𝑷𝟏 [𝜸] Γ— 𝑷𝟐 [𝜸] Γ— … Γ— 𝑷𝒎βˆ’𝟏 [𝜸] Γ— 𝑷𝒎 [𝜸] is equivalent to the cardinality of 𝑷𝟏 [𝜸] Γ— 𝑷𝟐 [𝜸] Γ— … Γ— 𝑷𝒎βˆ’𝟏 [𝜸] Γ— 𝑷𝒎 [𝜸] to imply transitivity. en_US
dc.language.iso en en_US
dc.subject Orbits; stabilizer; transitive group; ordered sets of 𝜸-tuples; cartesian product; fixed point. en_US
dc.title Transitivity of the Product Action of Finite Alternating Groups on Cartesian Product of Finite Ordered Sets 0f Ξ³Tuples en_US
dc.type Article en_US
ο»Ώ

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account