MMARAU Institutional Repository

Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies

Show simple item record

dc.contributor.author Lynda S. Mesoppirr, Evans K. Suter, Wesley N. Omwoyo, Nathan M. Oyaro & Simphiwe M. Nelana
dc.date.accessioned 2024-11-13T09:04:34Z
dc.date.available 2024-11-13T09:04:34Z
dc.date.issued 2024-11
dc.identifier.uri http://hdl.handle.net/123456789/17132
dc.description.abstract Hexavalent Chromium (Cr(VI)) is essential in many industrial processes. However, it finds its way into water bodies, posing health problems, including lung cancer and the inhibition of DNA and RNA in biological systems. Several chemical and traditional water purification methods have been developed in the past, but most are expensive, tedious and ineffective. This study aimed to prepare and characterize a low-cost hybrid adsorbent, b-Cyclodextrin capped magnetic nanoparticles anchored on a cellulosic matrix (CNC-Fe3O4NP-CD). The characterization techniques confirmed the integration of CNCs, Fe3O4NP and CD into the prepared CNC-Fe3O4NP-CD nanocomposite adsorbent. The adsorbent was employed in batch adsorption experiments by varying adsorption parameters, including solution pH, adsorbent dosage, initial Cr(VI) concentration, and contact time. From the findings, the nanocomposite adsorbent achieved a maximum Cr(VI) removal efficiency of 97.45%, while the pseudo-secondorder kinetic model best fitted the experimental data with high linear regression coefficients (R2 > 0.98). The Elovich model indicated that the adsorption process was driven by chemisorption on heterogeneous surface sites, with initial sorption rates surpassing desorption rates. These findings established that CNC-Fe3O4NP-CD presents high efficiency for Cr(VI) removal under acidic pH, offering the potential for optimization and application in real-world wastewater treatment. en_US
dc.language.iso en en_US
dc.subject Typha angustifolia; adsorption; wastewater treatment; hexavalent chromium; nanocomposite; kinetics en_US
dc.title Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account