

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 410

COURSE TITLE: QUANTUM MECHANICS 2

DATE: 17[™] APRIL 2019 0830 - 1030 HRS

INSTRUCTIONS TO CANDIDATES

TIME:

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Question one carries 30 marks while each of the others carries 20 marks.
- 3. Credit will be awarded for clear explanations and illustrations.

This paper consists of **4** printed pages. Please turn over

QUESTION ONE

- a) State four postulates of quantum mechanics. (4marks)
- b) A particle has spin $\frac{1}{2}$. A measurement is made of the sum of its x and z component of spin angular momentum what are the possible results of this measurement.

(5marks)

- c) Consider a particle subjected to time independent potential V(r).
 - i. Assume that the particle is described by a wave function of the form $\Psi(r,t)=\Phi(r)\chi(t)$. Show that $\chi(t)=A^{-i\omega t}$ (A is constant) and $\Phi(r)$ must satisfy the equation $\frac{-\hbar^2}{2m}\nabla^2\Phi(r)+V(r)\Phi(r)=\hbar\omega\Phi(r) \text{ where } m \text{ is the mass of the}$

```
particle (7marks)
```

- ii. Prove that the solutions of the Schrödinger equation of part
 (i) lead to a time independent probability density.
 (4marks)
- d) State three properties of Pauli spin matrices (3marks)
- e) Show the components of angular momentum in position space do not commute

(3marks)

f) Calculate the relative populations of the first five rotational levels of the ground vibrational state of $H^{35}Cl$ at 300 K. The ground vibrational state rotational constant $B_0 = 10.44$ cm⁻¹ (4marks)

QUESTION TWO

 a) Show that the only matrix which commute with Pauli spin matrix is a multiple of the unit matrix.

(5marks)

b) Explain how the Hatree method can be used to solve for the expectation energy for large atoms.

(5marks)

c) Consider a square potential barrier shown in the figure

0 x < 0 $V(x) = V_0 0 < x < l$ 0 l < x

A ssume that incident particles of energy $E>V_0$ are coming from $x=-\infty$. find the stationary states . apply the matching conditions at x=0 and x=I. find the transmission and reflection coefficients.and sketch the transmission coefficient as a function of the barrier's width I

(10marks)

QUESTION THREE

- **a)** Show that momentum operator \hat{P} is Hermitian. (4marks)
- b) A hydrogen atom can be viewed as two point -charged particles a proton and an electron with Coulomb's interacting potential between them. Write a Schrödinger equation for such a system and separate it into two parts: describing the motion of the centre of mass and another describing the relative motion of the proton and the electron.(10marks)
- c) Explain how you can include exchange effect in Hatree approximation to find the Hatree-Fock equation. explain how they differ with the Hatree equation

(6marks)

QUESTION FOUR

a) Consider one dimensional physical system described by the

Hamiltonian : $H = \frac{P^2}{2m} + V(x)$

i. Show that $[H, X] = -i\hbar \frac{p}{m}$

(6marks)

- ii. For a stationary state find $\langle p \rangle$ (consider only square integrable states)(4marks)
- **b)** Calculate the commutation $[\sigma_i, \sigma_j]$ where $j=x, y, z \land \sigma_i$ are Pauli matrices (7marks)
- *c)* Explain Raman effects as applied in vibrational spectra of molecules.

(3marks)

//END