

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE

COURSE CODE: MAT 1206 COURSE TITLE: LINEAR ALGEBRA I

Answer Question ONE and any other TWO questions

This paper consists of THREE printed pages. Please turn over.

QUESTION ONE (30 MARKS)

a) Let $\underline{u}=(1,-3,4)$ and $\underline{v}=(3,4,7)$, find;
i. The angle between \underline{u} and \underline{v}.
ii. Projection of \underline{u} on \underline{v}.
iii. A vector orthogonal to both \underline{u} and \underline{v}.
b) Determine whether the vectors $\underline{u}=(1,1,1), \underline{v}=(2,-1,3)$ and $\underline{w}=(1,-5,3)$ are linearly dependent or linearly independent.
c) Find the condition on a, b and c such that $\underline{w}=(a, b, c)$ belongs to a space spanned by the vectors $\underline{u}=(1,-3,2)$ and $\underline{v}=(2,-1,1)$.
d) Find the basis for the null space and the nullity of the solution space to the following homogenous system.
$2 x+4 y-5 z+3 t=0$
$3 x+6 y-7 z+4 t=0$
$5 x+10 y-11 z+6 t=0$

QUESTION TWO (20 MARKS)

a) Find the area of parallelogram with vertices at ${ }^{\bar{A}}(1,2,3),{ }^{1} B(-3,2,5)$ and ${ }^{\prime}(3,2,4)$.
b) Define linear combination, hence express vector $\underline{z}=(1,-2,5)$ as a linear combination of the vectors $\underline{u}=(1,1,1), \underline{v}=(1,2,3)$ and $\underline{w}=(2,-1,1)$.
c) Let the mapping $f: \geqslant$ be defined by $f(x, y)=(x, x+y)$, show that f is a linear mapping.
d) Determine the values of t for which the matrix
 singular.

QUESTION THREE (20 MARKS)

a) Determine the value of $k>0$ such that $\|\underline{u}\|=\sqrt{39}$, where $\underline{u}=(1, k,-2,5)$. (4 marks)
b) Let $214-2$, find the rank of the matrix A.
 the associative law for matrix multiplication holds.
d) Determine the values of k so that the following system in unknowns x, y and z $x+y-z=1$
$2 x+3 y+k z=3$
$x+k y+3 z=2$
has;
i. A unique solution?
ii. No solution?
iii. infinitely many?
(8 marks)

QUESTION FOUR (20 MARKS)

a) Solve the following system of linear equations by Gauss Jordan elimination.

$$
\begin{aligned}
& x_{1}+3 x_{2}-2 x_{3}+2 x_{5}=0 \\
& 2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6}=-1 \\
& 5 x_{3}+10 x_{4}+15 x_{6}=5 \\
& 2 x_{1}+6 x_{2}+8 x_{4}+4 x_{5}+18 x_{6}=6
\end{aligned}
$$

b) Verify dimension theorem for the linear transformation $T: \mathrm{R}^{3} \geqslant \mathrm{R}^{3}$ defined by $T(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+2 \mathrm{y}-\mathrm{z}, \mathrm{y}+\mathrm{z}, \mathrm{x}+\mathrm{y}-2 \mathrm{z})$.

