
MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR YEAR 3: SEMESTER 1 SCHOOL OF SCIENCE AND INFORMATION SCIENCES
BACHELOR OF SCIENCE/BACHELOR OF EDUCATION-SCIENCE/ARTS/SPECIAL EDUCATION

COURSE CODE: COURSE TITLE: DATE: 13/12/2018

MATH 3117
ADVANCED CALCULUS
TIME: 8.30-10.30 A.M

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Do not write anything on this question paper

QUESTION ONE (30 MARKS)

(a) Evaluate
(i) $\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x$.
(4 mks)
(ii) $\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x$
(b) Use the direct comparison test to determine whether the integral $\int_{1}^{\infty} \frac{x}{\sqrt{1+x^{6}}} d x$ converges or diverges.
(c) (i) Apply Taylor's theorem to the series e^{x} to estimate the value of the integral $\int_{0}^{1} e^{x^{2}} d x$
(ii) Expand $y=\log x$ in powers of $x-1$, hence evaluate the value of $\log 1.1$ correct to 4 decimal places.
(d) Evaluate
(i) the surface integral $\iint_{s} x^{2} y z d s$ where s is the part of the plane $z=1+2 x+3 y$ that lies above $(0,0)$ to $(2,3)$.
(ii) $\int_{c} f(x, y) d s$ if $f(x, y)=x y, c: x=\cos t, y=$
QUESTION TWO (20 MKS)
(a) Evaluate $\int_{(0,1)}^{(1,2)}\left(x^{2}-y\right) d x+\left(y^{2}+x\right) d y \quad$ along
(i) a straight line from $(0,1)$ to $(1,2)$
(ii) straight lines from $(0,1)$ to $(1,1)$ and then from $(1,1)$ to $(1,2)$
(iii) the parabola $x=t, y=t^{2}+1$
(b If c is the segment from $(0,0,0)$ to $(1,2,3)$, find $\int_{c} x e^{y z} d s$.

QUESTION THREE (20 MKS)

(a) Verify green's theorem in the plane for $\oint_{c}\left(2 x y-x^{2}\right) d x+(x+y) d y$ where c is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.(14 mks)
(b) (i)Show that the area bounded by a simple closed curve c is given by $\frac{1}{2} \oint_{c} x d y-y d x$.
(ii) Find the area of the ellipse $x=a \cos \theta, y=b \sin \theta$ for $0 \leq \theta \leq 2 \pi$. (3 mks)

QUESTION FOUR (20 MKS)

(a) Evaluate $\oint_{c} y^{2} d x+x^{2} d y$ where c is the triangle bounded by lines

$$
\begin{equation*}
x=0 ; x+y=1 ; y=0 . \tag{3mks}
\end{equation*}
$$

(b) Find $\iint_{s} \operatorname{curl} F$. $d s$, where s is the hemisphere $x^{2}+y^{2}+z^{2}=9$,
$F(x, y, z)=2 y \cos z i+e^{x} \sin z j+x e^{y} k, z \geq 0$ in upward orientation. (6 mks)
(c) Using Gauss divergence theorem, evaluate $\iint_{S} F . N d s$, where $F=4 x i-2 y^{2} j+z^{2} k$ and s is the surface bounded by the region $x^{2}+y^{2}=4, z=0, z=3$.

