MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FIRST/SECOND YEAR FISRT SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES DEPARTMENT OF COMPUTING AND INFORMATION SCIENCES FOR DEGREE IN BSC. IN STATISTICS WITH COMPUTING

COURSE CODE: STA 1106 COURSE TITLE: COMPUTATIONAL METHODS AND DATA ANALYSIS I

DATE: $5^{\text {TH }}$ DECEMBER, 2018 TIME: 0830-1030 HRS

INSTRUCTIONS TO CANDIDATES

i. Question ONE in section A is compulsory
ii. Answer any OTHER Two (2) Questions from section B
iii. Use diagrams, example and illustration where necessary
iv. All questions in section B have equal marks

SECTION A: COMPULSORY [30 MARKS]

QUESTION ONE

i. Write a C++ to output the following string of characters
"This is my C++ Program, I enjoy developing programs in C++!"
[4 Marks]
ii. Write a C++ program that two defines variables for floating-point numbers and initializes them with the values 123.456 and 76.543

Then display the sum and the difference of these two numbers on screen.
[4 Marks]
iii. Write a program that reads a sentence and prints out the sentence in reverse order using the reverse method of the StringBuffer class. For example, the method will display

"?uoy era woH"

[4 Marks]
iv. Write a recursive method to compute the sum of the first N positive odd integers.
[4 Marks]
v. Provide the syntax for the following control flow
i. loops with while,
[2 Marks]
ii. do-while, and
[2 Marks]
iii. for selections with if-else, switch.
[4 Marks]
vi. Create a program to calculate the square roots of the numbers
$4 \quad 12.25 \quad 0.0121$
Then read a number from the keyboard and output the square root of this number.
[8 Marks]

SECTION B: ATTEMP ANY TWO QUESTIONS [40 MARKS]

QUESTION TWO

i. Write an if statement to find the smallest of three given integers without using the min method of the Math class.
ii. Create a C++ program that defines a string containing the following character sequence:
"I have learned something new again!"
and displays the length of the string on screen. Read two lines of text from the keyboard. Concatenate the strings using " * " to separate the two parts of the string. Output the new string on screen.
[10 Marks]
iii. Draw control flow diagrams for the following two switch statements.

```
switch (choice) {
    case 1: a = 0;
    break;
    case 2: b = 1;
    break;
    case 3: c = 2;
    break;
default: d = 3;
    break;
}
```

```
switch (choice) {
    case 1: a = 0;
    case 2: b = 1;
    case 3: c = 2;
    default: d = 3;
}
```

[6 Marks]

QUESTION THREE

i. Write a C++ program that takes a shape of a Triangle, and capable of computing the perimeter and area of a triangle, given its three sides a, b, and c, as shown below. Notice that side b is the base of the triangle.

$$
\begin{aligned}
\text { Perimeter } & =a+b+c \\
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)} \\
\text { where } s & =\frac{a+b+c}{2}
\end{aligned}
$$

[5 Marks]
ii. Write a C++ program that accepts $\mathrm{N}, \mathrm{N}>1$, from the user and displays the first N numbers in the Fibonacci sequence. Use appropriate formatting to display the output cleanly.
[5 Marks]
iii. You can compute $\sin \mathrm{x}$ and $\cos \mathrm{x}$ by using the following power series:

$$
\sin X=X-\frac{X^{3}}{3!}+\frac{x^{5}}{5!}+\frac{X^{7}}{7!}+\cdots
$$

$$
\cos X=X-\frac{X^{2}}{2!}+\frac{x^{4}}{4!}+\frac{X^{6}}{6!}+\cdots
$$

iv. Write a program that evaluates $\sin \mathrm{x}$ and $\cos \mathrm{x}$ by using the power series. Use the double data type, and increase the number of terms in the series until the overflow occurs.
[10 Marks]

QUESTION FOUR

i. Write a C++ program that reads an integer between 0 and 65535 from the keyboard and uses it to seed a random number generator. Then output 20 random numbers between 1 and 100 on screen. [10 Marks]
ii. Write the function sum() with four parameters that calculates the arguments provided and returns their sum. Parameters: Four variables of type long. Returns: The sum of type long. Use the default argument 0 to declare the last two parameter of the function sum().Test the function sum() by calling it by all three possible methods. Use random integers as arguments.
[10 Marks]

QUESTION FIVE

i. Write a function pow(double base, int exp) to calculate integral powers of floating-point numbers.

Arguments:

The base of type double and the exponent of type int. Returns:
The power base exp of type double.
For example,calling pow $(2.5,3)$ returns the value
$2.53=2.5 * 2.5 * 2.5=15.625$
[20 Marks]
//END

