

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE & INFORMATION SCIENCE DEPARTMENT OF MATHEMATICS AND PHYSICAL SCIENCES DEGREE IN BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 2214 COURSE TITLE: CLASSICAL MECHANICS

DATE: 3RD MAY 2018

TIME: 1430 - 1630 HRS

INTRUCTIONS TO CANDIDATES

Answer question **ONE** and **ANY** other **TWO** questions

Maasai Mara University, School of Science, Department of Mathematics and Physical Sciences © 2018 Page 1

Part A: Total Possible Marks 30

- (a). Explain the difference between kinematics and dynamics as used in classical mechanics. (2 marks)
 - (b). (i) Define linear momentum and give its mathematical expression. (2 marks)
 - (ii) Starting from linear, show that Newton's 2^{nd} law can be expressed as $F = m\ddot{r}$, where *F* is external force, m is mass of the body and \vec{r} is acceleration of the body. (5 marks)
 - (c).(i) State the energy conservation theory of a particle (2 marks)
 - (ii) Show that the work done by an external force in moving a particle from position one to position two can be expressed as $W_{12} = T_2 - T_2$ and

 $W_{12} = V_1 - V_2$ and then show that $T_1 + V_1 = T_2 + V_2 = E$ (T is kinetic energy, V is potential energy and E is energy). (11 marks)

(d) Derive an expression for the virtual work and state the principle (Hint:

Part B: Total Possible Marks 40(Answer 2 questions)

2. (a). Define a conservative force field and give the condition that can be used to determine if a force is conservative. (2 marks)
(b).Show whether the force, \$\vec{F}\$ = (2xy + z²)\$\vec{i}\$ + x²\$\vec{j}\$ + 2xz\$\vec{k}\$, is conservative or not. Thereafter, determine the potential energy associated with the force, (10 marks)
(c). Show that the total force acting on a system of particles is \$F^{ext}\$ (\$F^{ext}\$ is external force acting on the system of particles). (8 marks)

Maasai Mara University, School of Science, Department of Mathematics and Physical Sciences © 2018 Page 2

3. (a). What is a rigid body?

(2 marks)

(b).Given a rigid body, containing an infinite number of particles of masses m_1 , m_2 , $m_3 \dots m_n$, and that the masses are $r_1, r_2, r_3 \dots r_n$ away from the axis of rotation. Find the rotational kinetic energy of such a body. (5 marks) (c). Explain what you understand by the following terms (3 marks)

- i. Constraints
- ii. Non-holonomic constrains
- iii. Holonomic constraints
- (d). Consider a system of two masses m_1 and m_2 where $m_2 > m_1$ connected by a light inextensible string of length L. The masses hang over a pulley and can only move vertically. Find the Lagrangian and the equation of motion of the system. (11 marks)
- 4. (a) If a body with one fixed point rotates with angular velocity ω and has an angular momentum Ω , prove that the kinetic energy can be given by $T = \frac{1}{2}\omega \Omega$. (4 marks)
- (b) Derive the Hamiltonian and the Hamilton's equation for a simple pendulum.

(16 marks)

END//