

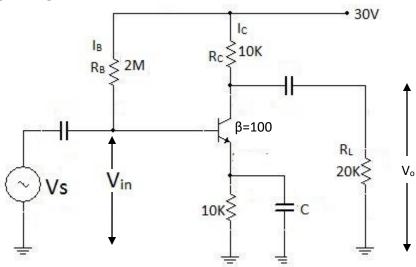
MAASAI MARA UNIVERSITY UNIVERSITY EXAMINATIONS 2017/2018 THIRD YEAR FIRST SEMESTER EXAMINATION SCHOOL OF SCIENCE

UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE) AND BACHELOR OF SCIENCE

COURSE CODE: PHY 313

COURSE TITLE: ELECTRONICS II

DATE:FRIDAY TIME:


INSTRUCTIONS

- Answer Question ONE [30marks] and any other TWO [20MARKS EACH].
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

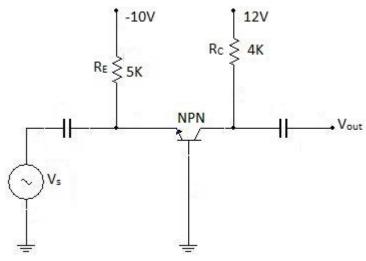
The paper has 5 printed pages

QUESTION ONE [30 MARKS]

- a. Define an ideal amplifier [1marks]
- b. Explain why a real transistor can not be a unilateral device [2mark]
- c. Draw the d.c and a.c equivalent circuits of an NPN transistor (4 marks)
- d. Explain briefly the difference between cascaded amplifier and compound amplifier. [2marks]
- e) In the CE amplifier circuit of the figure below, employing emitter feedback, find: r_{in} , r_L , A_v , and G_p Take transistor β = 100. How will these values change if emitter by pass capacitor is removed? (6 marks)

- f) For the single-stage CB amplifier shown in the figure below, find
 - a) Stage input resistance

b) stage output resistance


c) Current gain

d) voltage gain of the stage and

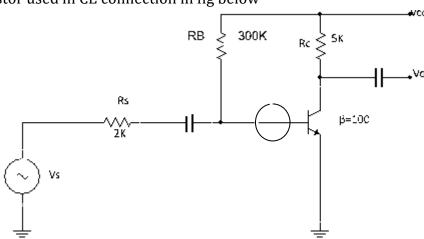
e) Stage power gain in dB

Assume α =1. Neglect V_{BE} and use r_e =25mV/I_E

(2 marks each)

- g) Explain how a transformer helps in impedance matching in transformer coupled amplifiers [4marks]
- H) i) What are h parameters?

(1 mark)


OUESTION TWO [20MARKS]

[2marks]

a. State four factors on which the h-parameters depends on

[2marks]

b. A transistor used in CE connection in fig below

Has the following set of h-parameters : h_{ie} =1K, h_{fe} =100, h_{re} =5x10⁻⁴ and h_{oe} =2x10⁻⁵s with R_s=2K and R_c=5K,determine

i. R_{in}(input impedence) [3marks] ii. R_o(outpout impedence) [3marks] A_i(current gain) [3marks] iii. A_v(voltage gain) iv. [3marks] Power gain [2marks] v. Explain the significance of the negative value of the voltage gain. vi.

c. Why are h-parameters referred as hybrid parameters

[2marks]

QUESTION THREE [20MARKS]

- a. A three-stage amplifier has a voltage gain of its three stages as 40,50,and 60,respectively. Find the total gain of the system. Express the gain in dB. 4marks]
- b. Explain briefly the operation of RC coupled amplifier [4marks]
- c. The output resistance of a transistor is 2K. The primary of a transformer has a resistance of 400ohm and the load across its secondary is 8Ω . Calculate the turn ration of the transformer required for impedance matching [6marks]
- d. What role does the coupling transformer perform in transformer coupled amplifier [6marks]

QUESTION FOUR [20MARKS]

- a. For the class A, CE amplifier circuit shown in the figure below, $V_{CEQ} = 10V$ and $I_{CQ} = 500$ mA. If collector i.e output current varies by $^{+}250$ mA when an input signal is applied at the base, compute,
 - i) total dc power taken by the circuit
 - ii) dc power dissipated by the collector load
 - iii) ac power developed across the load

- iv) power delivered to the transistor
- v) dc power wasted in transistor collector

(2 marks each)

- b. Distinguish between negative feedback and positive feedback [2marks]
- c. In a negative feedback amplifier, A=100, $\beta=0.04$ and $V_i=50$ mV. Find,
 - a. Gain without feedback
 - b. Output voltage
 - c. Feedback factor
 - d. Feedback voltage

(2 marks each)