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Standard Laplace transforms 

f(t) L{f(t)} 

 

1 1
𝑠⁄  

𝑒𝑎𝑡 1
𝑠 − 𝑎⁄  

𝑡𝑛 𝑛!
𝑠𝑛+1⁄  

 

 

QUESTION ONE 

a) Distinguish between  a scalar field and a vector field (2mks) 

b) The vector field F is defined by 𝑭 = 2𝑥𝑧𝒊 + 2𝑦𝑧𝒋 + (𝑥2 + 2𝑦2𝑧)𝒌. 

Calculate ∇ × 𝐅  and deduce that F can be written 𝐅 = ∇φ  . Determine the 

form of  φ          (5mks) 

c) Verify by direct calculation that ∇. (𝐚 × 𝐛) = 𝐛. (∇ × 𝐚) − 𝐚. (∇ × 𝐛)            

         (4mks) 

d) Determine the Laplace transform of 𝑡2𝑒𝑡    (3mks) 

e) A radioactive isotope decays in such a way that the number of atoms 

present at a given time,𝑁(𝑡),obeys the equation:  
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 . If there are 

initially 𝑁𝑜 atoms present, find 𝑁(𝑡) at later times.  (5mks) 

f) The acceleration of a particle at any time 𝑡 ≥ 0 is given   𝒂 =
𝑑𝑣

𝑑𝑡
=

12 cos 2𝑡𝒊 − 8 sin 2𝑡 𝒋 + 16𝑡𝒌       . If the velocity v and displacement r are 

zero at 𝑡 = 0 , find v and r at any time      (6mks) 

g) The voltage from a square wave generator is of the form  

𝑣(𝑡) = {
0, −4 < 𝑡 < 0
10, 0 < 𝑡 < 4

 and has a period of 8ms. Find the Fourier series for 

this periodic function      (5mks)  

 

 QUESTION TWO 
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a) Verify Green’s theorem in the plane for  ∮ (𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦
.

𝐶
  where C is a  

closed curve of the region bounded by 𝑦 = 𝑥 and 𝑦 = 𝑥2        (5marks) 

b) The current flowing in an electrical circuit is given by the differential equation 

𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
= 𝐸 where E, L and R are constants. Use Laplace transforms to 

solve the equation for current i given that when t=0,i=0          (8mks) 

c) Find the total work done in moving a particle in a force field given by 𝑭 =

3𝑥𝑦𝒊 − 5𝑧𝒋 + 10𝑥𝒌 along the curve 𝑥 = 𝑡2 + 1, 𝑦 = 2𝑡3, 𝑧 = 𝑡3 from t=1 to 

t=2              (4mks) 

d) Determine the constant a so that  the vector 𝐯 = (𝑥 + 3𝑦)𝐢 + (𝑦 − 2𝑧)𝐣 +

(𝑥 + 𝑎𝑧)k is solenoidal       (3marks) 

 

 QUESTION THREE 

a) If 𝐸 and 𝜑are the electric field strength and the electric potential respectively 

then 𝐸 = −grad𝜑 and div 𝐸 =
𝜌

𝜀
 . Find the Poisson’s equation  (4marks) 

b) Determine the solution of the Laplace’s equation in Cartesian coordinate         

           (6mks) 

c)  A metal bar, insulated a long its sides is 1 m long . it is initially room 

temperature of 15℃ and at time t=0, the ends are placed into ice at0℃.Find 

an expression for the temperature at  a point P at distance x m from one end 

at any time t seconds after t=0     (10mks)  

QUESTION FOUR 

a) Solve the differential equation 2
𝑑2𝑦

𝑑𝑥2
− 11

𝑑𝑦

𝑑𝑥
+ 12𝑦 = 3𝑥 − 2  (6marks) 

b) Show that the force F = (2𝑥𝑦 + 𝑧3)𝐢 + 𝑥2𝐣 + 3𝑥𝑧2 𝐤 is a conservative force 

field         (5marks) 

c) Find the corresponding scalar potential function force in this field   

           (5mks) 

d) Find the work done in moving an object in this field from p1(1,-2,1) to p2(3,1,4)

         (4mks)  

END// 


