

MAASAI MARA UNIVERSITY

 REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FIRST YEAR SECONDSEMESTERSCHOOL OF SCIENCE BACHELOR OF SCIENCE

COURSE CODE: MAT 1205/1208

 COURSE TITLE: ANALYTICAL GEOMETRY
INSTRUCTIONS TO CANDIDATES

- Answer ALL questions in Section A and ANY Other TWO questions from Section B
- DO NOT MAKE ANY WRITING ON THIS QUESTION PAPER

This paper consists of THREEprinted pages. Please turn over.

SECTION A (30 MARKS).

QUESTION ONE (30 MARKS).

a) Find the equation of the following lines:
i. The line passes through the point $(2,1)$ and $(5,2)$
(2 Marks)
ii. The gradient is $\frac{1}{3}$ and passes through the point $(2,-3)$
(2 Marks)
iii. Passing through the point $(2,1)$ and parallel to the line $2 x+3 y=5$.
(3 Marks)
b) Convert the Cartesian point $(x, y, z)=(-2,2 \sqrt{3}, 1)$ to cylindrical coordinates.
(2 Marks)
c) Find the distance of the point $(-15,8)$ from the origin
(3 Marks)
d) Determine the equation of a circle whose center is $(-1,2)$ and radius 3 cm
(3 Marks)
e) Show that $(3,5)$ lies on a circle $x^{2}+y^{2}-8 x-2 y=0$ and find the equation of the tangent at $(3,5)$
(4 Marks)
f) Convert the spherical point $(\rho, \theta, \phi)=\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$ to Cartesian coordinates.
(3 Marks)
g) Find the coordinates of the point that divides internally, the segment joining points $\mathrm{A}(7,-5)$ and $\mathrm{B}(-8,4)$ into the ratio 1:2.
(4 marks)
h) Express the following as polar coordinates
i) $(5,2)$
(2 Marks)
ii) $(-3,4)$
(2 Marks)

SECTION B (40 MARKS)
 QUESTION TWO (20 MARKS)

a) Find the equation of the parabola whose focus is $\mathrm{F}(2,0)$ and the directrix is $x=-2$
(3 Marks)
b) Find the focus, the equation of the directrix, the length of latus rectum for the parabola $5 y^{2}=24 x$
(4 Marks)
c) Find the vertex, the axis of symmetry, the focus, the equation of the directrix and the length of the latus rectum of the parabola $x^{2}-10 x-6 y+40=0$
(4 Marks)
d) Find the directrix, eccentricity and focus of the ellipse given by $4 x^{2}+9 y^{2}=36$
(5 Marks)
e) Find the equation of the ellipse whose focus is $\frac{2}{3}$ and the directrix is $y=9$
(4 Marks)

QUESTION THREE (20 MARKS)

a) Find the polar equation of the circle whose center has the Cartesian coordinates $C(5,8)$ and radius is 10
b) Write in Cartesian form the equation $r=9 \cos \theta$
c) Find the polar equation of the parabola $x^{2}=-12(y-3)$
d) Find the polar equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(4 Marks)
e) Determine the equation of the hyperbola whose eccentricity is $\frac{3}{2}$ and the foci are $F^{\prime}(-2,0)$ and $F(2,0)$
(4 Marks)

OUESTION FOUR (20 MARKS)

a) Find the equation of the tangent to the parabola

$$
y^{2}-2 y-12 x-23=0 \text { at a point } P\left(-\frac{7}{4}, 10\right)
$$

(5 Marks)
b) Draw the curve $6 y^{2}=x(x-2)^{2}$ for $0 \leq x \leq 2$
(4 Marks)
c) Find the point of intersection of the curve in (b) with the x-axis
(3 Marks)
d) Calculate the length of the loop of the curve

$$
\begin{equation*}
y^{2}=\frac{1}{6} x(x-2)^{2} \tag{8Marks}
\end{equation*}
$$

