

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF SCIENCE &INFORMATION SCIENCES BACHELOR OF SCIENCE-MATHEMATICS

COURSE CODE: MAT 320

COURSE TITLE: DYNAMICS

DATE: 16th APRIL 20 18

TIME: 11-1pm

INSTRUCTIONS TO CANDIDATES

1. Answer Question **ONE** and any other **TWO** questions

This paper consists of **3** printed pages. Please turn over.

SECTION A (COMPULSORY)

Question One (30Mks)

a)A thin uniform rod has length l and total mass M and the linear mass density varies with the distance x from the left according to $\lambda = \frac{\lambda_o}{l} x$ where λ_o is a constant with units in Kgm^{-1} . Determine an expression of λ_o in terms of l and M. Find the center of mass. **5mks**

b) Let there be a general direction \overrightarrow{OM} around which a vector \overrightarrow{OA} of constant magnitude rotates with a constant angular velocity φ in a fixed frame. Show

that $\frac{d\hat{A}}{dt} = \hat{\omega} \times \hat{A}$. 5mks

c) The mean distance from the earth to the sun is $r_{e,s} = 1.49 \times 10^{11}$ m. The mass of the earth is $m_e = 5.95 \times 10^{24}$ kg and the mass of the sun is $m_s = 1.99 \times 10^{30}$ kg. The mean radius of the earth is $r_e = 6.37 \times 10^6$ m. The mean radius of the sun is $r_s = 6.96 \times 10^8$ m. Where is the location of the center of mass of the earth-sun's system? Explain your answer. **5mks**

d). A particle moving with an initial velocity of 50ms^{-1} **j** undergoes an acceleration $\mathbf{a} = [35 \text{ms}^{-2} + (2 \text{ms}^{-5})t^3]\mathbf{i} + [4 \text{ms}^{-2} - (1 \text{ms}^{-4})t^2]\mathbf{j}$. What is the particle's velocity after 3.0 seconds assuming that it started from the origin? **4mks**

e) Given a pendulum made of a spring with a mass m on the end with a spring arranged to lie in a straight line with equilibrium length ℓ and let the spring have a length $\ell + x(t)$ with a vertical angle $\theta(t)$. Assuming that the motion takes place in a vertical plane, Find the equations of motion for x and θ . **5mks** f) A particle of mass **2** units is at position $\mathbf{r} = t^2 \mathbf{i} + t^3 \mathbf{j}$ relative to a fixed frame S. If the origin of *S*' is moving along the vector $\mathbf{R}(t) = (t^2 + 3)\mathbf{i} + (t - 3)\mathbf{j}$ relative to S, calculate:

ii) a'

SECTION B: ANSWER ANY TWO QUESTIONS

Question Two (20Mks)

a) Using the case of one observer in an inertial frame and another in a moving

reference frame, derive the Lorentz Transformations $x' = \frac{x - ut}{\sqrt{1 - \frac{u^2}{c^2}}}$ and $t' = \frac{t - \frac{ux}{c^2}}{\sqrt{1 - \frac{u^2}{c^2}}}$

given that the observers assign an event the coordinates (x,t) and (x',t'), respectively. (10 Marks)

b) Consider a function x(t) for $t_1 \le t \le t_2$ which has its end points fixed, and a quantity, $s = \int_{t_1}^{t_2} L(x, \dot{x}, t) dt$. If the function $x_o(t)$ yields a stationary value (that is, a

local minimum, maximum or saddle point) of *s*, show that $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_o} \right) = \frac{\partial L}{\partial x_o}$.

10mks

2mks

Question Three (20Mks)

Consider two frames of reference *S* and *S'* with unit vectors $n = (\mathbf{i}, \mathbf{j}, \mathbf{k})$ and $n' = (\mathbf{i}', \mathbf{j}', \mathbf{k}')$ and with a common origin. Let *S'* rotate with some axis through the origin with angular velocity ω . Given a particle *p* whose position vectors are $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\mathbf{r} = x'\mathbf{i}' + y'\mathbf{j}' + z'\mathbf{k}'$ relative to the frames *S* and *S'* respectively?

i) Show that $\mathbf{v} = \mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}$, where \mathbf{v} and \mathbf{v}' are expressions of velocity vectors in frames *S* and *S'* respectively. **10mks**

ii) Obtain the expression for acceleration in both frames and by use of Newton's Second Law of motion; obtain the expressions for Coriolis and Centrifugal forces. 10mks

Question Four (20Mks)

Two particles A and B of masses 2kg and 3kg respectively are at position vectors $\mathbf{r}_A = (2t^2 + t + 1)\mathbf{i} + (3t + 4)\mathbf{j} - 8\mathbf{k}$ and $\mathbf{r}_B = (4t^2 + 4t)\mathbf{i} + (t^4 + 3t)\mathbf{j} + (3t - 4t^2)\mathbf{k}$. Calculate at t = 1 s

i) The Centre of mass of the system.	4mks
ii) Total momentum of the system.	4mks
iii) Angular momentum of the system.	6mks
iv) Kinetic energy of the system.	6mks