

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF SCIENCE \&INFORMATION SCIENCES BACHELOR OF SCIENCE-MATHEMATICS

COURSE CODE: MAT 320 COURSE TITLE: DYNAMICS

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions

SECTION A (COMPULSORY)

Question One (30Mks)

a)A thin uniform rod has length l and total mass M and the linear mass density varies with the distance x from the left according to $\lambda=\frac{\lambda_{o}}{l} x$ where λ_{o} is a constant with units in Kgm^{-1}. Determine an expression of λ_{o} in terms of l and M. Find the center of mass.

5mks
b) Let there be a general direction $\overrightarrow{O M}$ around which a vector $\overrightarrow{O A}$ of constant magnitude rotates with a constant angular velocity ω in a fixed frame. Show that $\frac{d A}{d t}=\underset{\sim}{\omega} \times \underset{\sim}{A}$.

5mks
c) The mean distance from the earth to the sun is $r_{e, s}=1.49 \times 10^{11} \mathrm{~m}$. The mass of the earth is $m_{e}=5.95 \times 10^{24} \mathrm{~kg}$ and the mass of the sun is $m_{s}=1.99 \times 10^{30} \mathrm{~kg}$. The mean radius of the earth is $r_{e}=6.37 \times 10^{6} \mathrm{~m}$. The mean radius of the sun is $r_{s}=6.96 \times 10^{8} \mathrm{~m}$. Where is the location of the center of mass of the earth-sun's system? Explain your answer.
5mks
d). A particle moving with an initial velocity of $50 \mathrm{~ms}^{-1} \mathbf{j}$ undergoes an acceleration $\mathrm{a}=\left[35 \mathrm{~ms}^{-2}+\left(2 \mathrm{~ms}^{-5}\right) \mathrm{t}^{3}\right] \mathbf{i}+\left[4 \mathrm{~ms}^{-2}-\left(1 \mathrm{~ms}^{-4}\right) \mathrm{t}^{2}\right] \mathbf{j}$. What is the particle's velocity after 3.0 seconds assuming that it started from the origin?

4mks
e) Given a pendulum made of a spring with a mass m on the end with a spring arranged to lie in a straight line with equilibrium length ℓ and let the spring have a length $\ell+x(t) \quad$ with a vertical angle $\theta(t)$. Assuming that the motion takes place in a vertical plane, Find the equations of motion for x and θ.

5 mks
f) A particle of mass 2 units is at position $\mathbf{r}=t^{2} \mathbf{i}+t^{3} \mathbf{j}$ relative to a fixed frame S . If the origin of S^{\prime} is moving along the vector $\mathbf{R}(t)=\left(t^{2}+3\right) \mathbf{i}+(t-3) \mathbf{j}$ relative to S , calculate:
i) \mathbf{v}^{\prime}
4mks
ii) \mathbf{a}^{\prime} 2mks

SECTION B: ANSWER ANY TWO QUESTIONS

Question Two (20Mks)

a) Using the case of one observer in an inertial frame and another in a moving reference frame, derive the Lorentz Transformations $x^{\prime}=\frac{x-u t}{\sqrt{1-\frac{u^{2}}{c^{2}}}}$ and $t^{\prime}=\frac{t-\frac{u x}{c^{2}}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}$ given that the observers assign an event the coordinates (x, t) and $\left(x^{\prime}, t^{\prime}\right)$, respectively.
(10 Marks)
b) Consider a function $x(t)$ for $t_{1} \leq t \leq t_{2}$ which has its end points fixed, and a quantity, $s=\int_{t_{1}}^{t h} L(x, \dot{x}, t) d t$. If the function $x_{o}(t)$ yields a stationary value (that is, a local minimum, maximum or saddle point) of s, show that $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{o}}\right)=\frac{\partial L}{\partial x_{o}}$.

10mks

Question Three (20Mks)

Consider two frames of reference S and S^{\prime} with unit vectors $n=(\mathbf{i}, \mathbf{j}, \mathbf{k})$ and $n^{\prime}=\left(\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{k}^{\prime}\right)$ and with a common origin. Let S^{\prime} rotate with some axis through the origin with angular velocity ω. Given a particle p whose position vectors are $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\mathbf{r}=x^{\prime} \mathbf{i}^{\prime}+y^{\prime} \mathbf{j}^{\prime}+z^{\prime} \mathbf{k}^{\prime}$ relative to the frames S and S^{\prime} respectively?
i) Show that $\mathbf{v}=\mathbf{v}^{\prime}+\underset{\sim}{\omega} \times \mathbf{r}$, where \mathbf{v} and \mathbf{v}^{\prime} are expressions of velocity vectors in frames S and S^{\prime} respectively.
ii) Obtain the expression for acceleration in both frames and by use of Newton's Second Law of motion; obtain the expressions for Coriolis and Centrifugal forces.

10mks

Question Four (20Mks)

Two particles A and B of masses 2 kg and 3 kg respectively are at position vectors $\mathbf{r}_{A}=\left(2 t^{2}+t+1\right) \mathbf{i}+(3 t+4) \mathbf{j}-8 \mathbf{k}$ and $\mathbf{r}_{B}=\left(4 t^{2}+4 t\right) \mathbf{i}+\left(t^{4}+3 t\right) \mathbf{j}+\left(3 t-4 t^{2}\right) \mathbf{k}$.

Calculate at $t=1 \mathrm{~s}$
i) The Centre of mass of the system.
ii) Total momentum of the system.
iii) Angular momentum of the system.
iv) Kinetic energy of the system.

4mks
4mks
6 mks
6mks

