MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR
SECOND YEAR SECOND SEMESTER EXAMINATION

SCHOOL OF SCIENCE AND INFORMATION SCIENCES UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: COM1208 COURSE TITLE: DIGITAL ELECTRONICS

DATE: $3^{\text {RD }}$ MAY 2018

 TIME: 8:30AM-10:30AM
INSTRUCTIONS

- Answer Question ONE and any other TWO
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

This paper consists of 4_ printed pages.

SECTION ONE. QUESTION ONE: [30 marks] COMPULSORY

a) Explain the term logic gate.
[1 mark]
b) Explain the following terms in digital logic.
(i) Canonical form of Boolean Algebra
[2 marks]
(ii) Literal
[2 marks]
(iii) MAX term
[2 marks]
(iv) MIN term
[2 marks]
c) Represent the function $Z=f(A, B, C)=A \bar{B}+\bar{A} C+\bar{A} \bar{B} C$ in a truth table and simplify it.
[5 marks]
d) (i) Explain what you understand by term 'Flip-Flop'
[3 marks]
(ii) Design a Master-Slave Flip-Flop
[5 marks]
e) Outline two applications of multiplexers in our day to day technological use.
[4 marks]
f) Minimize the Boolean function $f(A, B, C)=\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+A B \bar{C}=\Sigma(0,2,4,6)$ using K map
[4 marks]

SECTION TWO. ATTEMPT ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO: [20 marks]

a) Describe briefly a multiplexer
b) Design a multiplexer with 8 data inputs and explain its working. [9 marks]
c) Convert 111011.011_{2} into an equivalent hexadecimal number.
d) Subtract $(1100)_{2}$ from $(1001)_{2}$ using the 1 's complement method. [2 marks]
e) Convert (367) 10 $_{10}$ into its Excess-3 code.
[2 marks]
f) Convert (101011) $)_{2}$ into Gray code.

QUESTION THREE: [20 marks]

a) What is Boolean Algebra
[3 marks]
b) For the following truth table, implement the logic function using gates.
[7 marks]

Truth Table			
X Y Z			
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

c) Simplify the expression $F(A, B, C)=\sum(1,4,5,6,7)$ NAND and NOR GATES only.
and implement it using
[10 marks]

QUESTION FOUR: [20 marks]

a) State the de Morgan's theorems
b) Implement the expression $\overline{\overline{A+B C}+\overline{A \bar{B}}}$
c) Reduce the expression $\overline{\overline{A+B C}+\overline{A \bar{B}}}$ using the identities, properties, rules, and theorems (DeMorgan's) of Boolean algebra and implement the reduced expression.
d) Explain THREE advantages of the reduced expression over the former.
[6 marks]

