

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATION

SCHOOL OF SCIENCE AND INFORMATION SCIENCES UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: COM1208
COURSE TITLE: DIGITAL ELECTRONICS

DATE: 3RD MAY 2018 TIME: 8:30AM-10:30AM

INSTRUCTIONS

- Answer Question ONE and any other TWO
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

This paper consists of 4_ printed pages.

SECTION ONE.

QUESTION ONE: [30 marks] COMPULSORY

_	a) Explain the term logic gate.			
b)	b) Explain the following terms in digital logic.			
	(i)	Canonical form of Boolean Algebra	[2 marks]	
	(ii)	Literal	[2 marks]	
	(iii)	MAX term	[2 marks]	
	(iv)	MIN term	[2 marks]	
c)	Proof of the function $Z = f(A, B, C) = A\overline{B} + \overline{AC} + \overline{AB}C$ in a truth table and simplify it. [5 marks]			
d) (i) Explain what you understand by term 'Flip-Flop'				
			[3 marks]	
(ii) Design a Master-Slave Flip-Flop				
			[5 marks]	
e)	e) Outline <u>two</u> applications of multiplexers in our day to day technological use. [4 marks]			
f)	Minimize t	he Boolean function $f(A, B, C) = \overline{ABC} + A\overline{BC} + AB\overline{C} = \sum (0, 0)$		
	map		[4 marks]	

SECTION TWO. ATTEMPT ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO: [20 marks]

a) Describe briefly a multiplexer	[3marks]
b) Design a multiplexer with 8 data inputs and explain its workin	g. [9 marks]
c) Convert 111011.0112 into an equivalent hexadecimal number.	[2 marks]
d) Subtract (1100) ₂ from (1001) ₂ using the 1's complement metho	d. [2 marks]
e) Convert (367) ₁₀ into its Excess-3 code.	[2 marks]
f) Convert (101011) ₂ into Gray code.	[2 marks]

QUESTION THREE: [20 marks]

a) What is Boolean Algebra

[3 marks]

b) For the following truth table, implement the logic function using gates. [7 marks]

Truth Table		
XYZ		
0 0 0	0	
0 0 1	1	
0 1 0	0	
0 1 1	0	
1 0 0	1	
1 0 1	1	
1 1 0	1	
1 1 1	1	

c) Simplify the expression $F(A, B, C) = \sum (1, 4, 5, 6, 7)$ and implement it using NAND and NOR GATES only. [10 marks]

QUESTION FOUR: [20 marks]

a) State the de Morgan's theorems

[4 marks]

b) Implement the expression $\frac{\overline{\overline{A} + BC} + \overline{\overline{AB}}}{\overline{\overline{AB}}}$

[6 marks]

- c) Reduce the expression $\overline{\overline{A+BC}+\overline{AB}}$ using the identities, properties, rules, and theorems (DeMorgan's) of Boolean algebra and implement the reduced expression. [4 marks]
- **d)** Explain <u>THREE</u> advantages of the reduced expression over the former.

[6 marks]

End and Good Luck.