

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 CADEMIC YEAR

SCHOOL OF SCIENCE AND INFORMATION SCIENCES

DEPARTMENT OF COMPUTING AND INFORMATION SCIENCES

FOURTH YEAR SECOND SEMESTER EXAMINATION

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COM 424E

COURSE TITLE: NEURAL NETWORKS

DATE: 24TH APRIL 2018 TIME:11:00AM-1:00PM

INSTRUCTIONS TO CANDIDATES:

ANSWER ALL QUESTIONS IN SECTION A AND ANY 2 QUESTIONS IN SECTION B

This paper consists of 3 printed pages. Please turn over

SECTION A (COMPULSORY – 30 MARKS)

SECTION A: COMPULSORY

1.				
a) Define the term				
	i		Neural Networks	[2 Marks]
	ii		Propagation function and network input	[4 Marks]
	iii		Feedforward network:	
	iv		Recurrent networks	[2 Marks]
	b)			
	i.		Distinguish between directed and indirect recurrence	[4 marks]
	ii.		Explain at least two applications of technical neural networks:	[4 marks]
	iii.		Discuss Components of neural networks	[4 marks]
	c)	De	fine the following terms	
	i.		Synchronous activation	[2 Marks]
	ii.		Random permutation	[2 Marks]
	iii.		Topological activation	[2 Marks]
~-	iv.		Explain two neural network learning paradigms	[4 marks]
	CTI	ON	В	
2.				
	i.		Distinguish between Online and Offline learning	[4 marks]
	ii.		Explain the Hebbian rule	[2 marks]
	iii.		Calculate the average value μ and the standard deviation _ for the follow	ing data
			points.	[6 marks]
			p1 = (2, 2, 2)	
			p2 = (3, 3, 3)	
			p3 = (4, 4, 4)	
			p4 = (6, 0, 0)	
			p5 = (0, 6, 0)	
	iv.		p6 = (0, 0, 6) Define the following terms	
	IV.		Input neuron	[2 marks]
		b)	Information processing neuron	[2 marks]
			Perceptron	[2 marks]
			Single layer perceptron	[2 marks]
3.		ω,	Single layer perception	[2 mans]
٠.	i.		Provide the Perceptron learning algorithm.	[10 marks]
	ii.		Explain the following terms in reference to NN in relation to human nerv	vous
			a. Receptors	[2 Marks]
			b. Effectors	[2 Marks]
			c. neural net (brain)	[2 Marks]
			or modern not (ordan)	[= 1.141110]

4.

i. Explain the Hopfield network.

[2 marks]

ii. Explain the Learning rule for Hopfield networks.

[4 Marks]

iii. Distinguish between heteroassociator and an autoassociator

[4 marks]

iv. Hopfield network with |K| = 1000 neurons when the weights wi,j shall be stored as integers. Is it possible to limit the value range of the weights in order to save storage space? [10 marks]

5.

i. Compute the weights wi,j for a Hopfield network using the training set

$$P = \{(-1, -1, -1, -1, 1); \\ (-1, 1, 1, -1, -1, -1); \\ (1, -1, -1, 1, -1, 1)\}.$$
 [13 marks]

- ii. Write down the equation for the output Yj of a McCulloch-Pitts neuron as a function of its inputs Ii. [4 Marks]
- iii. State the Learning rule [3 Marks]

END//