

MAASAI MARA UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018
SECOND YEAR FIRST SEMESTER EXAMINATION

SCHOOL OF SCIENCE

DEPARTMENT OF MATHEMATICS AND PHYSICAL SCIENCES

DEGREE IN BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHE 1205

COURSE TITLE: ORGANIC CHEMISTRY 1

INSTRUCTIONS:

Answer question ONE and any other TWO questions

QUESTION ONE (30 Marks)

1. (a) Define the following terms
(i) Catenation
(ii) Electronegativity
(iii) Pyrolysis
(3 Marks)
(b) (i) Draw and name the two conformations of ethane
(2Marks)
(ii) Draw the Lewis-electron dot formula of Sulphur dioxide
(1 Mark)
(iii) State three methods for determining the structural formula of organic molecules and state information provided by the methods
(3 Marks)
(iv) State any six classification of organic compounds (3 Marks)
(c) Briefly explain the following observations:-
(i) Cis-isomers have higher boiling points than their trans counterparts
(ii) Industrial alcohol is denatured
(1Mark)
(d) Draw the structural formulae for
(i) 3,3,4-triethylhexane
(ii) 1-phenyl-2-propanol
(iii) 6-butyl-3-ethyl-8-methyl-1-decyne
(3 Marks)
(e) Classify the following species as a nucleophile or an electrophile:(i) $\mathrm{CH}_{3} \mathrm{Cl}$ (ii) $\mathrm{CH}_{3} \mathrm{~S}$ (iii) $\mathrm{CH}_{3} \mathrm{CHO}$ (iv) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(2 Marks)
(f) (i) Give the general formula of Grignard reagent
(ii) Identify pairs of cis-trans isomers in the following compounds. Draw, name and indicate:-
(a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ (b) $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}(\mathrm{c})\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
(d) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CHCl}$
(g) Draw two structural isomers for each of the following with different functional groups. In each Case, describe a chemical test and the results obtained which could distinguish between the two structural isomers
(i) $\begin{array}{ll}\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} & \text { (ii) } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\end{array}$
(6 Marks)

QUESTION TWO (20 MARKS)

2. (a) (i) A hydrocarbon has the empirical formula CH 2 and a relative molecular mass of 70 . Write the molecular formula of the hyrocarbon.
(1 Marks)
(ii) Classify the following organic reactions
(a) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Hbr} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{CN} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}+\mathrm{Br}^{-}$
(2 Marks)
(c) Explain how you can control chlorination of Methane so that you obtain methyl chloride as the only product
(1 Mark)
(c) Describe any one chemical test that distinguishes an aldehyde and a ketone
(2 Marks)
(d) Draw the structural formula of organic product of each of the following reactions of propanal. Classify the type of reaction in each case.
(i) Propanal with Sodium tetrahydridoborate (III)(Sodium borohride) in water.
(ii) Propanal with Fehling's solution, followed by acidification of the product
(iii) Propanal with hydrogen Cyanide
(6 Marks)
(e) State any six uses of Aldeydes and Ketones
(3 Marks)
(f) (i) State three physical properties of alcohol
(11/2Marks)
(ii) State any six uses of alcohol

QUESTION THREE (20 Marks)

3. (a) (i) Outline four methods of identifying a functional group in a compound
(ii) What happens when isobutylene is subjected to hyroboration oxidation reaction
(b) (i) Explain why alkenes are more reactive than alkanes
(ii) State three properties of Ethers
(c) What Products will you get from the following reactions
(i) Benzoic acid is treated with Phosphorous PentaChloride
(ii) Butanoic acid is treated with Lithium tetrahridoaluminate
(iii) Ethanoic acid is treated with NaoH
(iv) Ethanoic acid with Phosphorous pentachloride ($71 / 2$ Marks)
(d) (i) Menthene a hydrocarbon found in mint plants has a systematic name, 1-isopropyl-4-methylcyclohexene. Draw its structure
($21 / 2$ Marks)
(ii) Write the structure of $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
(1/2 Mark)
4. (a) (i) State the two classes of Hydrocarbons
(2 Marks)
(ii) Using a general example show how a carboxylic acid can be converted into and Ester
(2 Marks)
(iii) How will you distinguish between: Hexene \& Hexane
(3 Mark)
(b) Chlorofluorocarbons, CFC's are useful compounds as they are non-flammable and unreactive. In the stratosphere, $\mathrm{C}-\mathrm{Cl}$ bonds are broken producing radicals.
(i) Draw the structure of 1,1,2-Trichloro-1,2,2Triflouroethane
(1 Marks)
(ii) Suggest why C-F bonds are not broken in the stratosphere,whereas C-Cl bonds are (1 Mark)
(iii) What are free radicals and what is needed to produce them from CFC's
(1 Mark)
(iv) Outline four methods of identifyinga functional group in a compound.
(2 Marks)
(c) Using structural formula where possible briefly explain the following:
(i) Alcohols have higher boiling points than ethers of corresponding molecular weight(both have the general formula- $\left(\mathrm{CnH}_{2} \mathrm{n}+{ }_{2} \mathrm{O}\right.$
(3 Mark)
(ii) Draw the structure of polyvinyl chloride, a polymer made from vinylchloride
(1 Mark)
(d) Classify each of the following reactions as either addition, substitution or elimination
(i) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{KOH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{KBr}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \rightarrow \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Hbr}$
(iii $\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
(11⁄2 Marks)
