

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE DEPARTMENT OF MATHEMATICS AND PHYSICAL SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHE 416

COURSE TITLE: CONCEPTS OF ORGANIC SYNTHESIS

DATE: 24TH APRIL 2018 TIME: 0830 - 1030HRS

INSTRUCTIONS:

Answer question **ONE** and any other **TWO** questions

QUESTION ONE (30 MARKS)

- 1. (a) (i) State two reasons why organic synthesis is possible(2 Marks)
 - (ii) State four reasons why should synthesize natural products (2 Marks)
 - (b) Explain the steps involved in designing an organic synthesis (5 Marks)
 - (c) (i) State two types of synthetic routes (2 Marks)
 - (ii) How could 2-Chlorohexane be synthesized from a hydrocarbon and any other necessary regents (2 Marks)
 - (d) Identify the synthons and their synthetic equivalents

(e) Identify all the reagents marked as A,B,C,D,E and F in the conversion Below

$$CH_3$$
 A
 CH_3
 C
 $COOH$
 E
 H_2N
 OCH_2CH_3
 C
 $COOH$
 $COOH$

- (f) (i) State two types of Claisen reactions (1 Marks)
 - (ii) Give the mechanism for the reaction below

O 1.
$$CH_3CH_2O^-$$
 O O $H_2CH_3C-C-C-OCH_2CH_3$ 2. H^+ CH_3 (5 Marks).

QUESTION TWO (20 MARKS)

- 2. (a) What is Michael addition reaction (1 Mark)
 - (b) Give the mechanism for the reaction below

- (c) (i) What is Claisen-Ester condensantion reaction (2 Marks)
 - (ii) Complete the reaction below

CH=CHCH₂CH₂OH +NaO+₂CN-=CCO-=Na+, RCOOH
$$\rightarrow$$
 (1Mark)

(1 Mark)

- (d) (i) Define a Ylide (2 Marks)
 - (ii) Describe how a Ylide is prepared (3 Marks)
- (e) Using a reaction mechanism show how 5,5-dimethyl cyclohexane 1,3-dione is synthesized from 4-methyl pent-3-en-2-one and diethylmalonoate (5 Mark)

QUESTION THREE (20 Marks)

- 3. (a) (i) State three qualities of a protecting group (3 Marks)
 - (ii) What is Clemensen's reduction? (1 Mark)
 - (iii Starting with acetylene, how would you synthesize the following
 - (a) $CH_3CH_2C \equiv CH$ (b) $CH_3CH = CHCH_3$ (4 Marks)
 - (b) Using a specific example show the Baeyer-Villager Oxidation

(3 Marks)

- (c) (i) Consider Benzocaine (5 Marks)
 - (ii) Write its synthesis (5 Marks)

QUESTION FOUR (20 Marks)

4.	(a)	Starting with phenol show how Aspirin is synthesized			
				(6 Marks)	
	(b).	Wha	t is Diels-Alder reaction	(2 Marks)	
	(c)	Show how the amine group is protected in the conversion			
		below		(3 ½ Marks)	
	(d)	Complete the reactions below (i)			
		(ii)			
		(iii)		(2 Marks)	
				(3 Marks)	
	(e)	(i)	Write the synthetic tree	(1 Mark)	
		(ii)	By carrying out retrosynthesis of the target r	nolecule given	
			below. Propose possible methods of compoung using the starting material conthan 7 carbons and triphenyl phosphene	•	
			END		