
MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR YEAR 3: SEMESTER 2 SCHOOL OF SCIENCE AND INFORMATION SCIENCES
BACHELOR OF SCIENCE/BACHELOR OF EDUCATION-SCIENCE/ARTS/SPECIAL EDUCATION

COURSE CODE: COURSE TITLE: MATH 311
REAL ANALYSIS 2 DATE: 23/8/2018
TIME: 8.30-10.30 A.M
(2 HOURS)

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Do not write anything on this question paper

QUESTION ONE (30 MARKS)

(a)(i) State the implicit function theorem.
(3mks)
(ii) Given $3 x^{2}-y z^{2}-4 x z-7=0$, use the implicit function theorem to show that near $(-1,1,2)$ we can write $y=f(x, z)$ and find $\frac{\partial y}{\partial x}(-1,2)$.
(b) (i) Define a monotonic function.
(ii) Prove that $f(x)=x^{3}-3 x^{2}+3 x+20$ is increasing on \mathbb{R}.
(c) Let $f_{n}(x)=\frac{x^{n}}{2^{n}}$ define a sequence of functions. Determine whether the sequence converges and find the range of convergence.
(d) (i) Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is monotonic, then f is of bounded variation
(ii) Suppose that f is a non-decreasing function on $[a, b]$. Show that

$$
\begin{equation*}
V_{a}^{x} f=f(x)-f(a) \forall x \in[a, b] . \tag{3mks}
\end{equation*}
$$

(e) State the inverse function theorem of calculus.

QUESTION TWO (20 MKS)

(a) Let $f(x)=x^{2}$ on $[0,1]$ and $\alpha(x)=2 x+1$ on $[0,1]$.
(i) Compute $U(P, f, \alpha)$ and $L(P, f, \alpha)$ where $P=\left\{0<\frac{1}{3}<\frac{2}{3}<1\right\}$
(ii) For all $\in \mathbb{N}$, let $P_{n}=\left\{0, \frac{1}{2}, \frac{2}{n}, \ldots 1\right\}$. Compute $\lim _{n \rightarrow \infty} U(P, f, \alpha)$ and $\lim _{n \rightarrow \infty} L(P, f, \alpha)$
(iii) From (ii) above, state whether or not $f \in \mathcal{R}(\alpha)$ on $[0,1]$
(b) Evaluate
(i) $\int_{0}^{\pi} x d(\sin \alpha)$
(3mks)
(ii) $\int_{-1}^{1} x d e^{|x|}$
(3mks)

QUESTION THREE(20 MKS)

(a) Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let a be a limit of E and suppose that $\lim _{x \rightarrow a} f_{n}(x)=A_{n}$. Prove that A_{n} converges and $\lim _{x \rightarrow a} f(x)=\lim _{n \rightarrow \infty} A_{n}$.
(b) Show that a sequence $\left\{f_{n}\right\}$ of functions defined on a set $E \in \mathbb{R}$ converges uniformly on E iff $\forall \epsilon>0$, there exist a number $N \in \mathbb{N}$ such that
$\left|f_{n}(x)-f_{m}(x)\right|<\epsilon \forall n \geq N, m \geq N$ and $x \in E$.
(c) Use weierstrass M-test to show that $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ is uniformly convergent (6 mks)

QUESTION FOUR(20 MKS)

(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and $\alpha:[a, b] \rightarrow \mathbb{R}$ be monotonically increasing function. If P is a partition of $[a, b]$, define
(i) Upper Riemann-stieltjes sum of f with respect to α over $[a, b]$.
(ii) Lower Riemann-stieltjes sum of f with respect to α over $[a, b]$.
(iii) When is the function f said to be Riemann stieltjes integrable?
(2mks)
(b) (i)Prove that if f is monotonic on $[a, b]$ and if α is continuous and monotonic on $[a, b]$, then $f \in \mathcal{R}(\alpha)$.
(ii) Let $f:[a, b] \rightarrow \mathcal{R}$ be bounded. Prove that $f \in \mathcal{R}(\alpha)$ on $[a, b]$ iff for every $\epsilon>0$ there exists a partition P such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
(c) Find the range of convergence of the series $\sum \frac{x^{n}}{n!}$.
(4mks)

