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Abstract

We develop a Mathematical model showing the main dynamical
regimes of the weed Opuntia stricta and the insect, Dactylopius opun-
tiae interaction. We prove that under appropriate conditions a positive
solution of the system is asymptotically stable, unstable or it is a pe-
riodic solution. Stable equilibria points are characterised by endemic
and epidemic populations. Endemic populations are regulated by the
number of cacti trees available. Epidemic populations are limited by the
total number of trees because mass attack of the insects may overcome
resistance of any tree.
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1 Introduction

The arid and semi-arid regions of East Africa have many endemic spiny and
succulent plant species, some of which are Opuntia stricta. Opuntia are native
to the Americans, see for instance [7]. In Kenya, Opuntia is considered an
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invasive exotic weed in Laikipia. Tens of thousands of acres of rangelands in
Laikipia which support wild animals and livestock have been occupied by the
weed, see for instance [9]. The invasive species is a fast-growing cactus. To get
rid of it probably the natives may choose to chop it and burn. Cactus does not
burn. The natives may choose to use chemicals which kill the plant selectively,
well it may kill the cactus but also poison the land. The poison may, most
likely find its way into the grass or trees and the animals would feed on it
and the result would be unpleasant (UNEP 2012). The most environmentally
friendly control method will be Biological control. Biological control involves
reduction of the weed population by natural enemies and typically involves an
active human role, these enemies include insects and pathogens. After years of
research, specialists from the Center for Agricultural Biosciences International
(CABI), have introduced a sap sucking insect, Dactylopius opuntiae, commonly
known as cochineal to control the cactus. Cochineal posses no threat to other
plant species. It eats up the cactus from inside out. The cactus slowly starts
to lose its fruits and eventually dries up, see for instance [9].

We wish to consider a mathematical model that describe the relationship
between Opuntia stricta and Dactylopius opuntiae. Thus, we have the following
model,

Ṗ = rP

(
S − P − BH

C + P

)
,

Ḣ = DH

(
P

C + P
− AH

)
, (1)

where the dot denotes differentiation with respect to time t. The positive
constants are: r, S, A,B,C and D with r being the intrinsic growth rate of the
Cacti, while D is the intrinsic growth rate of the insect Cochineal at time t.
The mass of the Cacti per hectare is represented by P := P (t). The constant S
is the measure of fertility that can support the growth of cacti and B represent
the density of Cacti consumed by the insect. The population density of the
insects is represented by H := H(t). The constant C, determine the growth
rate of the insects as they feed on the Cacti. The number of insects that die
due to natural death and other causes other than lack of natural food, cacti is
represented by A. To reduce the number of parameters and group them in a
meaningful way, we nondimensionalize the system in Equation (1) thus:

t =
t̂

rC
, P = Cp, B = Cb, D = rCd, H = Ch, A =

a

C
, (2)

Using, Equation(2), we obtain:

ṗ = p

(
s− p− bh

1 + p

)
,
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ḣ = dh

(
p

1 + p
− ah

)
, (3)

where the dot represent differentiation with respect to t̂. The parameter d is
the linear growth rate of the insects to that of the cacti and so d ≥ 1 and d ≤ 1
have definite ecological meaning; with the later, the cacti grow faster than the
insects. If p ≤ 1, it means that predation and allee factors are negligible in
this population range, see for instance [8].

2 Long Term Behaviour of the Solutions

The long term solutions of Equation (3) are useful in understanding the long
term behaviour of the system, see for instance [4, 10]. We shall check the long
term behaviour of the system by studying the stability of the Equilibria points.

2.1 Equilibria Points

The equalibria points of Equation (3) are given by:

ṗ = p

(
s− p− bh

1 + p

)
=: f(p, h) = 0,

ḣ = dh

(
p

1 + p
− ah

)
=: g(p, h) = 0. (4)

From Equation (4), the equilibria points are, E0(0, 0), E1(s, 0), and E2(p0, h0)
that solves the following equations,

h1 =
p

1 + p
− ah = 0,

h2 = s− p− bh

1 + p
= 0, (5)

where h1 and h2, are the nullclines of the system in Equation(3), for p >
0, h > 0.

The points of equilibria vary with various parameters. The point E0(0, 0),
represents a situation where there is no population. This condition persists
because there are no members of the population to die or reproduce. The point
E1(s, 0), also represents a persistent behaviour. In this case however the rate
of reproduction exactly balances the mortality and so the population remains
constant at this level. The point E2(p0, h0) represents co-existence of the cacti
and the insect.
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2.2 Linear Stability Analysis

Stability is determined by what happens around an equilibrium point, see for
instance, [1, 5]. Stable equilibria points are important,they represent funda-
mental features of the system. They are useful for making predictions about
the system because lots of solutions eventually settle down near the stable
equilibria solutions, see for instance [8]. Consider Equation (4), we shall check
the stability of the points using the community matrix:

J :=

(
fp fh
gp gh

)
|Ek

(6)

where k =∈ {0, 1, 2}.
The community matrix J , has eigenvalues λ given by,

λ2 − τλ+ δ = 0, (7)

where, τ and δ are the trace and the determinant of J respectively. The
necessary and sufficient conditions for linear stability are, τ < 0, δ > 0. The
equilibrium point E0 = (0, 0) is stable when, s < 0 and the equilibrium point
E1 = (s, 0) is stable when, s + 1 < −d. The solution En = (p0, h0), with p0
and h0, nonzero are given by the intersection of the nullclines.

We shall study these equilibria points using various propositions, that we
now state.
Proposition 1. For fh(p0, h0) < 0, and gh(p0, h0) > 0, there is an s∗, with
s∗ < p0 < s, h0 <

1
a
, such that, the equilibrium point, (p0, h0) is a focus and

it is asymptotically stable.

Proof. Proposition 1
Let

J(p, h) :=

(
fp fh
gp gh

)
(8)

where,

fh =
∂f

∂h
, fp =

∂f

∂p
, gh =

∂g

∂h
and gp =

∂g

∂p
, (9)

Let δ := fpgh − gpfh, the determinant of J(p0, h0), and τ := fp + gh,
the trace of J(p0, h0). For stability we have to demonstrate that δ >
0 and τ < 0. From Equation(4), fh(p0, h0) < 0, and gh(p0, h0) < 0, it
therefore, follows by the Implicit Function Theorem, that there exists func-
tions ϕ(p) and φ(p) such that;

f(p, ϕ(p)) = 0, (10)

g(p, φ(p)) = 0, (11)
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in the neighbourhood of (p0, h0), the functions ϕ(p) and φ(p) are as smooth
as f and g respectively. Differentiating (10), (11) with respect to p in the
neighbourhood of p0, we get;

fp(p, ϕ(p)) + fh(p, ϕ(p))ϕ′ = 0, (12)

that gives, ϕ′ = −fp
fh

;

gp(p, φ(p)) + gh(p, φ(p))φ′ = 0, (13)

where the prime represent differentiaton with respect to p yields,

δ = −fhghϕ′ − φ′. (14)

If, 0 < φ′ < ϕ′, the equilibrium point (p0, h0), is asymptotically stable if,
ϕ′ > 0, and φ′ > 0.

From Equation (13) and Equation (14),

τ = −fhϕ′ −
gp
φ′
.

From Equation (5) and (6), fh < 0 and gp > 0. if, ϕ′ < 0 and φ′ > 0, it follows
that, τ < 0. For, ϕ(p0, h0) = 0 and φ(p0, h0) = 0 at the equilibrium point
(p0, h0), where ϕ(p;h) = s− p− bh

1+p
, and φ(p;h) = p

1+p
− ah, then,

ϕp = −1 +
bh

(1 + p)2
, ϕh =

−b
(1 + p)

, (15)

φp =
1

(1 + p)2
, φh = −a. (16)

Thus δ in Equation(14) becomes:

δ = dph(ϕpφh − ϕhφp). (17)

Using Equations (15), (16) and (18), we get; −a( bh
(1+p)2

− 1) > 0, hence,

τ = −p+
bph

(1 + p)2
.adh, (18)

τ < 0, whenever, −1 + bh
(1+p)2

< 0, and so, bh < (1 + p)2. Consider Equation

(4), there is an equilibrium point when,

p(s− p− bh

1 + p
) = 0,

bh

1 + p
= s− p, (s− p)(1 + p) < (1 + p)2,
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The equilibrium point is:

p =
s− 1

2
, h =

(s+ 1)2

4b
,

from Equation (5),

h =
p

a(1 + p)
,→ 1

a
as p →∞.

The population value, s−1
2

is an approximate threshold value. There is there-
fore an s∗ = s−1

2
, such that,

s∗ < p0 < s,
(s+ 1)2

4b
< h0 <

1

a
,

where the equilibrium point (p0, h0), is asymptotically stable hence the proof.

Propostion 2 Let fh(p0, h0) < 0 and gp(p0, h0) > 0, then there is an s∗ such
that whenever, ( s−d−1

2
) < s∗ < s, 0 < h0 <

1
a
, there is a periodic solution.

Proof. From the characteristic Equation (10),and the community matrix in
Equation(7),δ := fpgh − gpfh and τ := fp + gh.

From Equation (15) and (16), δ = −fhgh(−φ′ + ϕ′), this shows that,δ > 0,
when ϕ′ ¡ φ and τ = fhϕ

′− gp
φ′
. For τ = 0, we rquire that, ϕ′ > 0, since gp > 0,

fh < 0, and φ′ > 0. There is a periodic solution when, 0 < φ′ < ϕ′. We now
find s∗,

From Equation (4), there is an equilibrium point when, bh = (1+p)(s−p),

τ = −p+
bhp

(1 + p)2
− adh,

at equilibrium point, and

ah =
p

(1 + p)
.

τ = 0, when,

−1 +
bh

(1 + p)2
=

d

(1 + p)
,

that upon using bh = (s− p)(1 + p), we obtain

(p∗, h∗) =

(
s− d− 1

2
,

p∗

a(1 + p∗)

)
,

as an equilibrium point.
There is an s∗ = (s−1)

2
, such that, whenever,

s− d− 1

2
< s∗ < s, 0 < h0 <

1

a
,

there is a periodic solution, hence the proof.
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Proposition 3. For fp(p0, h0) < 0 and gp(p0, h0) > 0, there is an s∗ such that
whenever;

s− d− 1

a(s− d+ 1)
< s∗ < s, 0 < h0 <

1

a
,
s− a− 1

2
< s∗ < s,

the equilibrium point (p0, h0) is unstable.

Proof. We see that, δ > 0, when φ′ < ϕ′, τ > 0, implies that; ϕ′φ′ >
−gp
fh
. But gp > 0, fh < 0, this indicates that, −gp

fh
> 0. The equilibrium

point (p0, h0) is therefore unstable whenever 0 < φ′ < ϕ′ < ϕ′. Now, s−2
2
< p.

Consider Equation (4), then τ = −p+ bhp
(1+p)2

− adh, from Equation,(5) ah =
p

(1+p)
, −1 + bh

(1+p)2
− d

(1+p)
> 0, −1 + bh

(1+p)2
− d

(1+p)
> 0,

−(1 + p)2 + bh− d(1 + p) > 0,

at equilibrium point, bh = (s−p)(1+p), −(1+p)2+(s−p)(1+p)−d(1+p) > 0,
−2p > 1− s+ d, p < s−d−1

2
,

when,

p∗ =
s− d− 1

2
, h∗ =

s− d− 1

a(s− d+ 1)
.

Consider Equation (5),

h0 =
1

a

p

(1 + p)
,

as

p→∞, h→ 1

a
.

There is an s∗ = s−1
2

such that, the equilibrium point (p0, h0), is unstable
whenever,

s− d− 1

2
< s∗ < s,

s− d− 1

a(s− d+ 1)
< h0, 0 < h0 <

1

a
,

hence the proof.

3 Conclusion

On the strength of analysis, the result have shown that, taking into account
the rate of reproduction of the cacti and insects, there are two different sce-
nario of equilibria points that are significant. The Equilibrium point E0(0, 0),
represent a situation where there are no members of the cacti species to repro-
duce. If there is an introduction of the cacti in a given environment, the cacti
population increases due to natural growth. Whereas, if the cacti population
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is diminishing due to environmental conditions or because it is being fed on
by the insects, the condition is unstable. The Equilibrium point E1(s, 0), the
cacti population is maintained at the carrying capacity with the absence of the
insects, hence it is a stable equilibrium condition. A Biological control method
is suitable, when the density of the weed is small, see for instance [6].
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