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The area of ideals is important in the study of Analysis, algebra, Geometry and 
Computer science. The various types of ideals have been studied, for example 
m  ideals and h  ideals. The m  ideals defined on real Banach spaces are 
referred to as u - ideals. The natural examples of u - ideals with respect to 
their biduals, are order continuous Banach lattices. Using the approximation 
property, we shall study properties of u - ideals and their characterization. We 
define the set of compact operators ( )K X   on X  to be u - ideals given that 

X  is a separable reflexive Banach space with approximation property if and 
only if there is a sequence ( )nT  of finite rank of operators with   lim 2 1n nI T→∞ − =   

and lim
n nT x x→∞ = . We shall show that u -ideals containing no copies of 

sequences 1  are strict u - ideals. 
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INTRODUCTION 
 The notion of ideals was first introduced by 
Alfsen and Effros [ ]4  in the early 1970’s. They defined a 

closed subspace X of Banach Space Y  to be an ideal in Y  
if the orthogonal complement of X  in the dual of Y  is the 
kernel of a norm one projection. That is, ∗∗ → YY:β  such 

that X ⊥  = ( ) }{ * *: * 0, .y Y y x x X Kerβ∈ = ∀ ∈ =    A simple 

example is that X  is always an ideal in X ∗∗ . Let  
:Q X X∗∗∗ ∗∗∗→  be the identity. Then, clearly Q   is a 

projection and { }0KerQ = . Now X X ∗∗⊆  and so 

X X X⊥ ∗ ∗∗∗⊆ ⊆ .However, 
( ){ } { }| 0, 0 .X x X x x x X⊥ ∗ ∗ ∗= ∈ = ∀ ∈ = Therefore, 

KerQ X ⊥= . This shows    that  X   is always an ideal in 

X ∗∗ . Since   then scholars have studied various types of 
ideals and their properties. They have borrowed a lot from 
algebra since ideals are known to have absorbing 
properties. For instance an ideal I of a ring R which is an 
additive subgroup and is such that for all Rx∈  
and Iy∈ , x y I∈ . The m -ideals defined on a real 
Banach space are called u -ideals whereas on a complex 
Banach space is called h -ideals. Let X   be a subspace of a 
Banach space Y .  We will say that X  is an m -summand 
if it is the range of a contractive projection and that X  is 

an ideal in Y  if  X ⊥  is the kernel of a contractive 
projection on  Y ∗  . Godefroy, Kalton and Saphar [3] 
defined u -ideals as the generalizations of m -ideals. The 
subspace ( )YXK ,  is an ideal in ( )YXL ,  if ( )YXK ,  is the 
kernel of a contractive projection β  in ( )∗YXL , . That is, 

:Y Yβ ∗ ∗→  such that { ( ): 0X y Y y x⊥ ∗ ∗ ∗= ∈ =  ∀ }x X∈ . 
Moreover, ( )YXK ,  is a u -ideal in ( )( ).,,YXL  if 2 1I β− = .  
The natural examples of u -ideals with respect to their 
biduals, are order-continuous Banach lattices. 
   In this paper we fill a few gaps in u -ideals determined 
by sequence spaces  1  ,  

∞ , 0c .  We show that if X  is a separable u -ideal 

containing no copies of  1  then, it is a strict u -ideal. In 
section 2 we discuss u -ideals and their characterization. 
In section 3 we characterize strict u -ideals determined by 
sequence space  

1 . 
Remark 1.1:  The sequence spaces 

1   and 
∞  can never be 

strict u -ideals in their biduals since dual spaces are 1-
complemented in their biduals   [5]. 
2.0 u -IDEALS 
We say that a closed subspace X of Y is a u -summand if 
there is a subspace Z 
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 (the u - complement of X ) so that X Z Y⊕ =  and if 
x X∈ , z Z∈   then x z x z+ = − . If X is a u -

summand then the induced projection  :P Y X→  with 

( )P Y X=  and KerP Z=  satisfies  2 1I p− = . 

Lemma 2.1 :  Suppose X  is a closed subspace of  Y.  Then 
there is at most one projection P of Y onto X satisfying   

2 1I p− = . 
Proof: Suppose P and Q are two projections such that 

2 2 1I P I Q− = − = . Then 

( )( ) ( ) ( )2 2 2 2 2 2 2 4I p I Q I Q P I Q I Q P PQ− − = − − − = − − +

Now, since ( )Q Y X= , we have 

( ) ( )PQ y P Qy Qy= =  , where y Y∈  and Qy X∈ . 
Therefore  
( )( ) ( )2 2 2 2 4 2 2 2 .I p I Q I Q P Q I Q P I Q P− − = − − + = + − = + −
 Thus we have   

( )( )( ) ( )( ) ( )( )2
2 2 2 2I P I Q I Q P I P Q− − = + − + −  

                       = ( ) ( ) ( )( )2 2 2I Q p Q P I Q P+ − + − + −  

                      = ( ) ( ) ( )2 2 4I Q P Q P Q P+ − + − + −                                                

                      = ( ) ( )2 24 4I Q P Q PQ QP P+ − + − − +      

                     = I+2.2 ( )Q P− . 

( )( )( ) ( )( ) ( )( )3
2 2 4 2I P I Q I Q P I Q p− − = + − + −  

                               = I+2 ( ) ( ) ( )24 8Q P Q P Q P− + − + −  

                              = I+2.3 ( )Q P−   etc. 

In general  ( )( )( ) ( )2 2 2 .
n

I P I Q I n Q p− − = + −  
Since   

( ) ( )2 2 1 2 nI n Q P I n P Q n P Q ∞− − = − − ≥ − − →∞  if   

0P Q− ≠       

and ( )( )( )2 2 2 2
n n nI P I Q I p I Q− − ≤ − − =1 , 

We have a contradiction, unless P Q= . 
Lemma 2.2: If A is a u -ideal in B then A is a u -summand 
if and only if W is weak ∗ -closed. 
Proof: Clearly if W  is  weak ∗ -closed then X is weak ∗ -

continuous and so  X Y
∗

=  where 2 1I Y− =   and 

( )Y B A= .  Conversely, suppose A is a u -summand and 

let Y be a projection onto A with 2 1I Y− = . Then 

I Y ∗−  has a range A⊥  and so I Y I X∗− = −  by 
Lemma 2.1. Hence X  is weak ∗ -continuous. 
Proposition 2.1: Let X  be a closed subspace of a Banach 
space  Y . If ( ),K Z X  is a u -ideal in ( ),K Z Y  for some 

Banach  space  { }0Z ≠ , then X  is u -ideal in Y . 

Proof: Suppose ( ),K Z X  is an ideal in ( ),K Z Y . Let E 

be a finite dimensional subspace of Y . Let z Z∈  and 
z Z∗ ∗∈  be such that ( ) 1z z z z∗ ∗= = = . Denote 

{ } ( ): , .T z y y E K Z Y∗= ⊗ ∈ ⊆  Let 0ε >  and let  

( ): ,V T K Z X→  be an operator such that 1V ε≤ +  

and ( )V S S=  for all ( ), .s T K Z X∈ ∩  Now define a 

map :U E X→   by ( )( )yU V z y z∗= ⊗ . Then U 

“locally 1-complements” X in Y by local formulations of u -
ideals [1, Lemma 2.9]. 
 
3. STRICT u -IDEALS 
    In this section we consider strict u -ideals, that is, the 
Banach space X  which are strict   
u -ideals in their biduals X ∗∗  .  It has already been show 
that Banach spaces containing copies of 1  are not 

strict u -ideals [ ]3, 5.1Theorem  . We show that separable 

Banach spaces containing no copies of 1  are strict u -

ideals.  A  Banach space X  is said to be a strict u -ideal in 
its bidual when the canonical decomposition 

⊥∗∗∗∗ ⊕= XXX  is unconditional. In other words for 
X  to be a strict u -ideal the u -complement of X ⊥  must 

be norming, that is, the range V  of the induced projection 
on X ∗∗∗

 is   a norming subspace of X ∗ . 
Remark 3.1: The sequence space 1  is a u -ideal since it 

is a u -summand in  1
∗∗ . It is therefore not a strict u -ideal 

(Lemma 2.1).  
Proposition 3.1:  Let  X   be a Banach space containing 
no copy of   1 . If   X   is a strict u -ideal in  X ∗∗  and  

( ),K Z X  is an Ideal in ( ),K Z X ∗∗  for a reflexive 

Banach space Z, then ( ),K Z X  is a strict u -ideal in  

( ), .K Z X ∗∗  

Proof: Let  : X Xλ ∗∗∗ ∗∗∗→   be the projection from the 
definition of  a strict u -ideal and let Q denote the ideal 

projection on ( ), .K Z X
∗∗∗  It follows  that  X ∗  does not 

contain any proper norming closed subspace [3, 
proposition 5.2]. But then X has the unique extension 
property thus ( ),K Z X  is a u -ideal in ( ), .K Z X ∗∗  

However Q is the   desired u -ideal projection and  

( ) ( )Q x z x zλ∗∗∗ ∗∗∗⊗ = ⊗  for x X∗∗∗ ∗∗∗∈ , z Z∈ . In 

view of this equality the range of Q contains the 
functionals x z∗∗∗ ⊗  with x ranλ∗∗∗ ∈  and z Z∈ . But 

this functionals give the norm of any ( ),V K Z X ∗∗∈  by  

( ){ }( )sup : ,ranV x Vz x A z Azλ
∗∗∗ ∗∗∗= ∈ ∈  because 

the ranλ is a norming subspace for X ∗∗   in X ∗∗∗  in fact 
ran Xλ ∗= (cf. [3]). 
    We now characterize the u -ideals determined by the 
sequence space  1 . 

Remark 3.2: A separable Banach space containing 1  
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cannot be a strict u -ideal in its bidual  [5]. 
Theorem 3.1:  Let A  be a u -ideal. The following are 
equivalent: 
i) A  is a strict u -ideal. 
ii) A∗  is a u -ideal. 
iii) 2 1I p− = . 

iv) Every separable subspace of A   has separable dual. 
v) A  contains no copy of 1 .   

Proof.  (i) ( )ii→  This is clear since A  is a separable 

Banach space. In this case the operator :V A A∗∗ ∗∗→  is 
an isometry. Since V  is hermitian it follows that ( )V A = 

( )2V A  and so V is invertible on ( )V A . This implies that 

V  is surjective and so its spectrum is contained in the unit 
circle. Since its hermitian ( ) { }1Vδ ⊂ ± . However  

2 1I V− =  and so the spectrum of V     reduces to {1}. 

Hence the spectrum of 0V I− =   from Sinclair theorem   

[ ]2  and   N=F so that  A∗  is u -summand in  A∗∗∗ . 

(ii) ( )iii→  Let A∗   contain no copy of  0c . Then since it 

is a dual space, ∞  embeds into A∗  and so has the 

property (u); which is not true. Therefore A∗  is a u -
summand in  A∗∗∗ . Let F: A A∗∗∗ ∗→  be a hermitian 
projection. Let N: X V∗∗∗ →  be the hermitian projection 
associated with the fact that A is a u -ideal. Then 
2 ( )FN NF− is hermitian. Note that since F is also a 

norm one projection onto A∗  and so FN is a hermitian on 
A∗ . Hence 

A
I FN∗ −   is a hermitian implying that 

A
I FN∗ − =0 on  A∗  and thus FN is another contractive 

projection onto  A∗  . Hence NF is a contractive projection. 
Thus   A∗ =V and F=P. 
(iii) ( )iv→  Let A  be a separable space for which A∗  is 
separable then by [3, Theorem 2.8]   the hermitian 
condition holds. 
(iv) ( )v→   It is clear that A  contains no copy of  1  since 
it has a separable dual. 
(v) ( )i→  V is an identity on X ∗∗  and so F P=  and A  
is a strict u -ideal. 
Proposition 3.1: Assume that  X   is non-reflexive. If   X   
is a strict u -ideal in its bidual then every subspace of X   
contains no copy of 1  .  
Proof:  Since V is norming the associated operator  

:T X X∗∗ ∗∗→  is an isometry. If X contains a copy of  1  

then, there exists x X∗∗ ∗∗∈  with 1x∗∗ =  and such  

that x x x x∗∗ ∗∗+ = −   for all x X∈ . If  I P k− =  

then we can find a net ( )dx  in X  , converging weak ∗  to 

Tx∗∗ , with limsup dTx x k∗∗ − ≤ . Since T is an   isometry 

and  
 limsup dx x k∗∗ − ≤ ,Therefore  

limsup limsupd dx x Tx x k∗∗ ∗∗+ = + ≤ . However, 

limsup 2dTx x∗∗ + ≥ . It is clear that every subspace of 

a strict u -ideal in its bidual does not contain 1 . 

Proposition 3.2: Let X  be a Banach space containing no 
copy of 1 . The following statements are equivalent: 

(i) X  is a strict u -ideal. 
(ii) Every separable closed subspace Y  of  X   and every 

element in the bidual of Y   satisfy the hermitian 
condition. 

Proof:  Assuming that X  is separable. We will show that 
X ∗  is separable. Let V  be a closed norming subspace of  X. 

Then if x V
⊥∗∗ ∈  we  have x x x∗∗ − ≥  for all x X∈ . In 

particular inf 2 2
xx s x x∗∗

∈ − ≥ . Therefore V X ∗=  and since X 

has no proper norming subspaces it follows that X ∗  is 
separable. Let there be a sequence ( )nx  converging 

weak ∗  to x∗∗  so that lim 2 1nx x∗∗ − = . By density 

argument this holds for all 
X

x s ∗∗
∗∗ ∈  and which shows 

that 2 1I p− = . If X  is nonseparable then, every 
separable subspace Y satisfies u -constant of Y to be 1. 
This implies that the u -constant of  X   is 1 and hence  
X   is a strict u -ideal in X ∗∗  containing no copy of 1 . 

Proposition 3.3:  Let A be a Banach space containing no 
copy of 1 . Show that  

(i) A∗  has an approximating sequence ( )na  and A is a 
strict u -ideal iff A has an approximating sequence 

( )na   . 

(ii) A and A∗  have an approximating sequence ( )na   iff A 

has an approximating sequence ( )na   . 

       Proof: Let ( )na be an unconditional approximating 

sequence for A∗ . Then since A∗   
 contains no copy of 0c  [ 3, Theorem3.5] there is a 

projection :Q A A∗∗∗ ∗→  by lim nQx a x∗∗∗ ∗∗ ∗∗∗= . It 

follows that 2 1I p− = . However, if A is a  strict u -ideal 

then 2 1I p− =  and by Lemma 2.1, Q=P. Now  let 

:na A A∗ ∗∗ ∗∗→   .  Let : Ac A A
∗∗∗∗ →  be the quotient 

map, and let :J A A∗∗→  be the canonical embending. Let 
:n nH ca J A A∗∗ ∗∗= → . Then nH ∗  : A A⊥ ∗→  and 

coincides with na∗∗ . Thus nH ∗  converges to zero for the 

strong operator topology implying that nH  converges to 
zero for a weak topology on ( ), AK A A

∗∗ . Therefore by 

approximating properties lim
n na a→∞ = . In (ii) A has an 
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approximating sequence ( )na  such that ( )na∗ is an 

approximating sequence for A∗  and such that 
lim 2 1n nI a→∞ − = . Then nH  - nA  coverges weakly to zero 

in ( )K A  and so there is an approximating sequence of 

convex combinations nR  of nH   such that 
lim 2n nI R→∞ − =1. 
Open questions: 
(i) Is a Banach space X  a u -ideal in X ∗∗   ?. 
(ii) If the dual of  X  is a u -summand in X ∗∗ ,does it 
imply that it is a strict u -ideal ?. 
(iii) Let   X  be a separable reflexive Banach space. Can we 
show that ( )K X  is a 
 u -ideal in ( )w X  iff   X  has an approximating sequence?. 
CONCLUSION 
We have shown that u -ideals containing no copies of 

sequences 1  are strict u - ideals. 
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