

Heredity of Lower Separation Axioms on Function Spaces

Njuguna E. Muturi

Department of Mathematics, Egerton University, Egerton, Kenya Email: edward.njuguna@gmail.com

Received 23 January 2014; revised 23 February 2014; accepted 28 February 2014

Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

0 3 **Open Access**

Abstract

The set of continuous functions from topological space Y to topological space Z endowed with a topology forms the function space. For A subset of Y, the set of continuous functions from the space A to the space Z forms the underlying function space with an induced topology. The function space has properties of topological space dependent on the properties of the space Z, such as the T_0 , T_1 , T_2 and T_3 separation axioms. In this paper, we show that the underlying function space inherits the T_0 , T_1 , T_2 and T_3 separation axioms from the function space, and that these separation axioms are hereditary on function spaces.

Keywords

Function Space; Underlying Function Space; Hereditary Properties

1. Introduction

The set of continuous functions from the space Y to the space Z is denoted by C(Y,Z). The set open topology τ defined on the set C(Y,Z) generated by the sets of the form $F(U,V) = \{f \in C(Y,Z) : f(U) \subset V\}$, where the sets U and V ranges over the class C of compact subsets of Y and Ω_Z class of open subsets of Z respectively, is called the compact open topology. The sets of the form F(U,V) forms subbases for the compact open topology τ on C(Y,Z) (see [1]). The set open topology τ defined on the set C(Y,Z) generated by the subbases $S(y,U) = \{f \in C(Y,Z), f(y) \in U\}$ where $y \in Y$ and $U \in \Omega_Z$ is called point open topology (see [2]).

Let
$$A = \bigcap_{i=1}^{n} U_i$$
 for $\{U_i : i = 1, 2, 3, \dots, n\}$ family of non-empty open subsets of Y. The set $C(A, Z)$ consist

of continuous functions of the form $f \circ i = f|_A$ where $i: A \to Y$ is an inclusion mapping (see [3]).

Let the topological space Z be a T_i -space for i = 0, 1, 2, 3, then the function space $C_{\tau}(Y, Z)$ with compact open topology τ inherits the T_i -separation axioms for i = 0, 1, 2, 3 (see [4] and [5]).

Definition 1.1 For $A \subset Y$, the sets of the form

 $C(A,Z) \cap S(y,V) = \left\{ f \in C(Y,Z) : f(\{y\} \cap A) \in V \right\} = \left\{ f \in C(Y,Z) : f|_A(y) \in V \right\} = S(y,V) \forall y \in A \text{ as defined}$ in [3], forms the subbases for point open topology on the set C(A,Z).

Definition 1.2 The sets of the form

 $C(A,Z) \cap F(U,V) = \{f \in C(Y,Z) : f(A \cap U) \subset V\} = \{f \in C(Y,Z) : f|_A(U) \subset V\} = F(U,V) \text{ where } U \text{ is open in } A, U \in C \text{ and } V \in \Omega_Z \text{, defines the subbases for the set open topology on the set } C(A,Z) \text{ (see [3]).}$ This topology is referred to as open-open topology (see [6]). If U is compact, then F(U,V) defines the subbases for the compact open topology on the set C(A,Z).

The point open topology and the compact open topology are also open-open topologies. The set C(A,Z) endowed with set open topology ζ is written as $C_{\zeta}(A,Z)$ and is referred to as the underlying function space of the space $C_{\tau}(Y,Z)$ (see [3]).

Definition 1.3 Let U_{\circ} and V_{\circ} be open subsets of Y and Z respectively. The set $C(U_{\circ}, V_{\circ})$ forms the subspace of the function space $C_{\tau}(Y,Z)$ with the induced topology ϱ generated by the subbases $C(U_{\circ}, V_{\circ}) \cap F(U, V) = \{f \in C(Y,Z) : f(U_{\circ} \cap U) \subset (V_{\circ} \cap V)\} = \{f \in C(Y,Z) : f(U) \subset V\} = F(U,V)$ (see [7]). The following lemma and theorem are important for our consideration.

Lemma 1.4 In a regular space, if F is compact, U an open subset of a regular space and $F \subset U$, then for some open set V, $F \subset U$ and $\overline{V} \subset U$.

From the above lemma, the following inference is made. Let $K_i \in \mathbb{C}$ where \mathbb{C} is a class of compact subsets of Y and $U_i \in \Omega_Z$. Then for the space $C_\tau(Y,Z)$ with compact open topology τ , $f(K_i)$ is a compact subset of U_i . Since Z is a regular space, there exist open sets $V_i \in \Omega_Z$, such that $f(K_i) \subset V_i$ and $\overline{V_i} \subset U_i$. This implies that $F(K_i, V_i) \subset F(K_i, \overline{V_i}) \subset F(K_i, U_i)$, in which the assertion $\overline{F(K_i, V_i)} \subset F(K_i, \overline{V_i})$ can be made (see [5]).

Theorem 1.5 The function $\sigma: C_{\zeta}(A, Z) \to C_{\varrho}(U_{\circ}, V_{\circ})$ defined by $\sigma(f|_{A}) = f$ is a homeomorphism (see [7]).

2. Lower Separation Axioms on the Underlying Function Space $C_{\mathcal{L}}(A, Z)$

In this section, we show that the underlying function space $C_{\zeta}(A,Z)$ inherits the T_i -separation axioms for i = 0, 1, 2, 3 from the space $C_{\tau}(Y,Z)$. Topologies τ and ζ are both compact open.

Theorem 2.1 Let the function space $C_{\tau}(Y,Z)$ be a T_{\circ} space. The function space $C_{\zeta}(A,Z)$ for $A \subset Y$ is a T_{\circ} space.

Proof. Let $f, g \in C_{\tau}(Y, Z)$ be distinct maps such that $\forall y \in Y$, $f(y) \neq g(y)$. Then $\forall y \in A$,

 $f|_A(y) \neq g|_A(y)$. For the open set S(y,V) containing f but not g in $C_\tau(Y,Z)$, the open set

$$C(A,Z) \cap S(y,V) = \left\{ f \in C(Y,Z) : f(\{y\} \cap A) \in V \right\} = \left\{ f \in C(Y,Z) : f|_A(y) \in V \right\} = S(y,V) \quad \text{in} \quad C_{\zeta}(A,Z) \quad \text{con-}$$

tains $f|_A(y)$ but not $g|_A(y)$. Therefore the space $C_{\zeta}(A,Z)$ is a T_{\circ} space.

Theorem 2.2 Let the function space $C_{\tau}(Y,Z)$ be a T_1 space. The function space $C_{\zeta}(A,Z)$ for $A \subset Y$ is a T_1 space.

Proof. Let $f, g \in C_{\tau}(Y, Z)$ be distinct maps such that $\forall y \in Y$, $f(y) \neq g(y)$. Then $\forall y \in A$,

 $f|_A(y) \neq g|_A(y)$. For the open sets S(y,V) containing f but not g and S(y,U) containing g but not f in $C_{\tau}(Y,Z)$, the open sets

$$C(A,Z) \cap S(y,V) = \left\{ f \in C(Y,Z) : f\left(\{y\} \cap A\right) \in V \right\} = \left\{ f \in C(Y,Z) : f\left|_A(y) \in V \right\} = S(y,V)$$

and

$$C(A,Z)\cap S(y,U) = \left\{g \in C(Y,Z) : g\left(\{y\}\cap A\right) \in U\right\} = \left\{g \in C(Y,Z) : g|_A(y) \in U\right\} = S(y,U)$$

in $C_{\zeta}(A,Z)$ are neighborhoods of $f|_A(y)$ but not $g|_A(y)$ and $g|_A(y)$ but not $f|_A(y)$ respectively. Therefore the space $C_{\zeta}(A,Z)$ is a T_1 space.

Theorem 2.3 Let the function space $C_{\tau}(Y,Z)$ be a T_2 space. The function space $C_{\zeta}(A,Z)$ for $A \subset Y$ is a T_2 space.

Proof. Let $f, g \in C_{\tau}(Y, Z)$ be distinct maps such that $\forall y \in Y$, $f(y) \neq g(y)$. Then $\forall y \in A$, $f|_A(y) \neq g|_A(y)$. For the disjoint open sets S(y,V) and S(y,U) neighborhoods of f and g respectively in $C_{\tau}(Y,Z)$, the open sets

$$C(A,Z)\cap S(y,V) = \left\{ f \in C(Y,Z) : f\left(\{y\}\cap A\right) \in V \right\} = \left\{ f \in C(Y,Z) : f|_A(y) \in V \right\} = S(y,V)$$

and

$$C(A,Z) \cap S(y,U) = \left\{ g \in C(Y,Z) : g\left(\{y\} \cap A \right) \in U \right\} = \left\{ g \in C(Y,Z) : g \mid_A (y) \in U \right\} = S(y,U)$$

in $C_{\zeta}(A,Z)$ are disjoint neighborhoods of $f|_{A}(y)$ and $g|_{A}(y)$ respectively. Therefore the space $C_{\zeta}(A,Z)$ is a T_{2} space.

Theorem 2.4 Let the function space $C_{\tau}(Y,Z)$ be a regular space for a regular space Z. The function space $C_{\tau}(A,Z)$ for $A \subset Y$ is a regular space.

Proof. The space $C_{\tau}(Y,Z)$ is regular for a regular space Z if for the open cover $F(K_i,U_i)$ of f, there exist open sets $F(K_i,V_i) \subset F(K_i,U_i)$ neighborhoods of f such that for $g \in C(Y,Z)$ and $g \notin F(K_i,U_i)$, $F(x,Z \setminus V_i)$ for some $x \in K_i$ is a neighborhood of g which does not intersect $F(K_i,V_i)$ and

 $\overline{F(K_i,V_i)} \subset F(K_i,U_i) \text{ For } F(K_i,V_i) \subset F(K_i,U_i), \quad F(K_i,V_i) \cap C(A,Z) \subset F(K_i,U_i) \cap C(A,Z) \text{ implying}$ that $F(\bigcup_i,V_i) \subset F(\bigcup_i,U_i)$, where $\bigcup_i = K_i \cap A$. For $g \notin F(K_i,U_i)$ we have that $g \notin F(\bigcup_i,U_i)$, implying that $g|_A \notin F(\bigcup_i,U_i)$ and for $x \in A$, $g|_A \in F(x,Z \setminus V_i)$. Therefore $F(x,Z \setminus V_i)$ is a neighbourhood of $g|_A$ not intersecting $F(\bigcup_i,V_i)$. $F(K_i,V_i) \cap C(A,Z) \subset F(K_i,\overline{V_i}) \cap C(A,Z) \subset F(K_i,U_i) \cap C(A,Z)$ implies that $F(\bigcup_i,V_i) \subset F(\bigcup_i,\overline{V_i}) \subset F(\bigcup_i,U_i)$. From the assertion $\overline{F(K_i,V_i)} \subset F(K_i,\overline{V_i})$ in Lemma 1.4, we have that $\overline{F(\bigcup_i,V_i)} \subset F(\bigcup_i,\overline{V_i})$. Therefore $F(x,Z \setminus V_i)$ and $F(\bigcup_i,U_i)$ are two disjoint open sets neighborhoods of $g|_A$ and $\overline{F(\bigcup_i,V_i)}$ respectively. Hence the set C(A,Z) with the induced topology ζ is a regular space.

3. Conclusion

The underlying function space $C_{\zeta}(A,Z)$ inherits the T_i -separation axioms for i = 0,1,2,3 from the function space $C_{\tau}(Y,Z)$. From theorem 1.5, the underlying function space $C_{\zeta}(A,Z)$ is homeomorphic to the subspace $C_{\varrho}(U_{\circ},V_{\circ})$ of the function space $C_{\tau}(Y,Z)$. This implies that the subspace $C_{\varrho}(U_{\circ},V_{\circ})$ is a T_i -space for i = 0,1,2,3, if the function space $C_{\tau}(Y,Z)$ is a T_i -space for i = 0,1,2,3. Therefore the T_i -separation axioms for i = 0,1,2,3 are hereditary on function spaces.

References

- [1] Fox, R.H. (1945) On Topologies for Function Spaces. American Mathematical Society, 27, 427-432.
- [2] Kelley, J.L. (1955) General Topology. Springer-Verlag, Berlin.
- [3] Muturi, N.E., Gichuki, M.N. and Sogomo, K.C. (2013) Topologies on the Underlying Function Space. *International Journal of Management, IT and Engineering*, **3**, 101-113.
- [4] Arens, R.F. (1946) A Topology for Spaces of Transformations. The Annals of Mathematics, 2, 480-495. <u>http://dx.doi.org/10.2307/1969087</u>
- [5] Willard, S. (1970) General Topology. Addison-Wesley Publishing Company, United States of America.
- [6] Kathryn, F.P. (1993) The Open-Open Topology for Function Spaces. *International Journal Mathematics and Mathematical Sciences*, **16**, 111-116. <u>http://dx.doi.org/10.1155/S0161171293000134</u>
- [7] Muturi, N.E. (2014) Homeomorphism between the Underlying Function Space and the Subspace of the Function Space. *Journal of Advanced Studies in Topology*, **1**, 57-60.