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Abstract

The study of class (Q) operators on Hilbert spaces has been exploited into various classes
such as Quasi class (Q) , M-Quasi class (Q) , (n+k)-Class (Q) , Almost class (Q) and (α, β)-
class (Q) among others . Results have been proved showing that some of these classes converge
to the strong operator topology and results striking relationships between these classes and other
general classes were achieved . However , little has been done to expand the results of class
(Q) operators into the class of skew-Quasi-p-class (Q) . Hence, in this study, we introduce the
category of Skew Quasi-p-class (Q) operators. We examine the fundamental characteristics of
this class and establish its connection with other classes, such as quasi-p-normal operators .
We also introduce the class of Posimetrically equivalent operators which is a generalization
of Metrically equivalent operators , we characterize this class in terms of Complex symmetric
operators and study their relations with other equivalence relations such as the class of n-
Metrically equivalent operators . We finally introduce the class of Mutually class (Q) operators .
Furthermore, we explore the interrelation between this class and other classes in a comprehensive
manner . The methodology used include but not limited to , properties of operators like unitary
operators , quasi-p-normal operators and skew-adjoint operators . Results shows that the class of
skew quasi-p-class (Q) operators have Bishop’s property and that they are isoloid and polaroid
; Posimetrically equivalent operators are closed under scalar multiplication and Mutually class
(Q) operators are related to class (Q) operators . The study of these classes of (Q) operators will
be helpful in the telecommunication industry by generalizing the allocation of network resources
basing on priority of network . As a result , high-priority traffic such as video and voice will be
given more bandwidth by being transmitted with lower packet loss and delay .
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Chapter 1

Introduction

1.1 Background information

In operator theory, an operator refers to a mathematical object that acts on elements of a given

vector space. Specifically, an operator is a mapping that takes vectors from one vector space to

another. In the context of operator theory, the vector spaces involved are usually Hilbert spaces,

which are complete inner product spaces.

There exist several well-established classes of operators that have been extensively studied

and analysed. These classes include but are not limited to self-adjoint operators, unitary

operators, normal operators, and compact operators (Furuta, 2001) . Each of these classes

possesses unique properties and characteristics that have been extensively explored in the

literature.

However, despite the existing classes, there is a need to introduce new classes of operators

to further expand the understanding of operator theory and address specific mathematical and

practical challenges. The introduction of new classes allows for the exploration of operators with

distinct properties and behaviours, providing a more comprehensive framework for analysing

and describing various operator characteristics.

By introducing new classes such as skew quasi-p-class (Q) operators, posimetrically equivalent

operators, and mutually class (Q) operators, researchers can investigate and understand a broader

range of operator properties and relationships. These new classes offer the opportunity to
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explore novel connections, patterns, and phenomena that may not be captured by the existing

operator classes. Moreover, the introduction of new classes paves the way for the development

of specialized techniques and tools tailored to the specific properties and behaviours exhibited

by operators in these classes. Overall, the introduction of new classes of operators in operator

theory enhances the depth and breadth of knowledge in the field and enables researchers to tackle

complex problems and advance the understanding of operator behaviour in diverse contexts.

1.2 Basic Concepts

In this section , we outline basic abstractions that will be elemental to our study .

Definition 1.2.1. In an inner product space, which is defined on a vector space V , there exists

a non-negative mapping ⟨., .⟩ : V x V → K such that ∀ §, † ∈ V and λ ∈ K ; the following

axioms hold :

1 . ⟨§, §⟩ ≥ 0 and ⟨§, §⟩ = 0 ,if and only if § = 0.

2 . ⟨§+ †, ‡⟩ = ⟨§, ‡⟩+ ⟨†, ‡⟩

3 . ⟨λ§, †⟩ = λ⟨§, †⟩

4 . ⟨§, †⟩ = ⟨†, §⟩

(V , ⟨., .⟩) is referred to as an inner product space (Furuta, 2001, Definition 1.1) .

Definition 1.2.2. A Hilbert space is a complete inner product space (Kreyszig, 1991) .

Definition 1.2.3. An isometry operator in a given Hilbert space H is defined as an operator U

that satisfies the following conditions :
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(1) ∥U§∥ = ∥§∥ for every § ∈ H

(1) implies (1’)

(1’) (U§,U†) = (§, †) , ∀ §,† ∈ H

A unitary operator in a given Hilbert space H is an operator U that acts as an isometric,

mapping one Hilbert space H onto another Hilbert space H (Furuta, 2001, Section 2.2.1) .

Definition 1.2.4. Consider a vector space X over the complex scalars C. If there exists a real

number ∥§∥ for every vector § ∈ X that satisfies certain conditions (1), (2), and (3), then ∥§∥

is defined as the norm of § :

1 . ∥§∥ ≥ 0 for all § in X ,and ∥§∥ = 0 if and only if § = 0 ;

2. ∥λ§∥ = |λ| ∥§∥ for all § in X and all complex number λ ;

3 . ∥§+ †∥ ≤ ∥§∥ + ∥†∥ for all § and † in X (Kreyszig, 1991) .

Definition 1.2.5. A Banach space is a type of normed space that possesses the property of

completeness (Bachman & Narici, 2000) .

Definition 1.2.6. An operator G in the space of bounded operators B(H) is referred to as:

(i) Normal when G∗G = GG∗

(ii) Self-adjoint when G∗ = G

(iii) Skew adjoint when G∗ = −G

(iv) An orthogonal projection when G∗ = G ( idempotent ) and G2 = I

(v) Unitary when G∗G = GG∗ = I

(vi) A symmetry when G = G∗ = G−1
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(vii) Isometric when G∗G = I

(viii) Partial Isometry when G = GG∗G or equivalently when G∗G is a projection

(ix) Hyponormal when G∗G ≥ GG∗

(x) Quasinormal when G(G∗G) = (G∗G) G

(xi) k-quasinormal when Gk(G∗G) = (G∗G) Gk

(xii) N-normal when G∗Gn = GnG∗

(xiii) Quasi-Isometry when G∗2G2 = G∗G

( xiv) N-quasinormal when (G∗G) Gn = Gn(G∗G)

(xv) Skew-normal when G2 = G∗2

(xvi) α-operator when G3 = G∗

(xvii) Q-operator when G2G∗2 = (G∗G)2 (Furuta, 2001, Section 2.1.1) .

Definition 1.2.7. An operator G in the space of bounded operators B(H) is defined as a θ-

operator if the commutator [ G∗ + G , G∗G ] equals zero (Amjad et al., 2019) .

Definition 1.2.8. A bounded linear operator G is considered an α-operator if G3 is equal to its

adjoint G∗ (Jibril, 2010) .

Definition 1.2.9. A bounded linear operator G is classified as being in the class (Q) if G∗2G2 =

(G∗G)2 (Jibril, 2010) .

Definition 1.2.10. A bounded linear operator G is referred to as an Almost Class (Q) operator

if G∗2G2 ≥(G∗G)2 (Wanjala & Adhiambo, 2021) .
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Definition 1.2.11. A bounded linear operator G is considered to be an (n+k)-power (Q) operator

when the equation G2(n+k)G∗2 = (G∗G)2 (Manikandan & Veluchamy, 2018) .

Definition 1.2.12. An operator G in the space of bounded operators B(H) is referred to as class

Q∗-operator when G2G∗2 = (GG∗)2 (Wanjala & Nyongesa, 2021) .

Definition 1.2.13. An operator G in the space of bounded operators B(H) is referred to as class

K∗ Quasi-n-class (Q) operator if (G∗)kG∗2G2n = (G∗Gn)2(G∗)k (Wanjala & Kiptoo, 2021) .

Definition 1.2.14. An operator G in the space of bounded operators B(H) is referred to as (α

, β)-class (Q) if α2 G∗2G2 ≤ (G∗G)2 ≤ β2G∗2G2 for 0 ≤ α ≤ β ≤ 1 (Wanjala & Nyongesa,

2021) .

Definition 1.2.15. An operator G in the space of bounded operators B(H) is referred to as class

(BQ) if G∗2G2 commutes with (G∗G)2 (Wanjala & Adhiambo, 2021) .

Definition 1.2.16. A bounded linear operator G is said to belong to Quasi-class (Q) if GG2G∗2

= (G∗G)2G (Revathi & Maheswari, 2019) .

Definition 1.2.17. A bounded linear operator G is said to be M quasi-class (Q) operator if

GG2G∗2 = M(G∗G)2G for a bounded operator M (Revathi & Maheswari, 2019) .

Definition 1.2.18. Two bounded linear operators S and G are considered to be metrically

equivalent if the equation S∗S = G∗G holds (Nzimbi et al., 2013) .

Definition 1.2.19. Two bounded linear operators S and G are regarded as being n-metrically

equivalent if the equation S∗Sn = G∗Gn is satisfied, where n is a positive integer ( Wanjala et

al., 2020) .
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Definition 1.2.20. Two bounded linear operators S and G are said to be (n,m)-metrically

equivalent if S∗mSn = G∗mGn for positive integers n and m (Wanjala & Nyongesa, 2021) .

Definition 1.2.21. If there exists an invertible operator N such that S∗S can be expressed

as N−1(G∗G)N and S∗ + S can be expressed as N−1(G∗ + G)N , then the bounded linear

operators S and G are regarded as almost similarly equivalent (Musundi et al., 2013) .

Definition 1.2.22. If G is a bounded linear operator, it is considered isoloid if all isolated points

of the spectrum of G i.e σ(G) ; are also elements of the point spectrum σp(G). G is polaroid if

every isolated point of σ(G) is a pole resolvent of G (Muneo et al., 2018) .

Definition 1.2.23. A bounded linear operator G is classified as n-perinormal if the inequality

GnG∗n ≥ (G∗G)n holds true for a positive integer n (Hongliang & Fei, 2014) .

Definition 1.2.24. Two bounded linear operators S and G are said to be mutually normal if

GG∗ = S∗S and G∗G = SS∗ (Jibril, 1999) .

Definition 1.2.25. The operator G belonging to the bounded operators on Hilbert space H is

referred to as A-normal if the equation G♯G = GG♯ is satisfied (Adel, 2012) .

Definition 1.2.26. The bounded linear operator G in the space of bounded operators on

Hilbert space H is considered quasi-p-normal if the operators (G + G∗) and (G∗G) commute

(Senthilkumar & Revathi, 2019) .

Definition 1.2.27. The bounded linear operator G in the space of bounded operators on Hilbert

space H is defined as A-quasi normal if the equation G(G♯G) = (GG♯)G holds (Panayappan &

Sivamani, 2012).
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Definition 1.2.28. The bounded linear operator G in the space of bounded operators on Hilbert

space H is considered to be (n, m)-normal if the equation G∗mGn = GnG∗m holds true, where n

and m are positive integers (Eiman & Mustafa, 2016) .

Definition 1.2.29. For a bounded operator G in the space of bounded operators on Hilbert space

H , it is said to have Bishop’s property if, for all sequences of an analytic function f§ : U −→ H

, where U is an open subset of the complex plane, the expression (λ − G)f§λ approaches zero

as § tends to infinity uniformly on all compact subsets of U, and f§λ tends to zero as § tends to

infinity locally uniformly on U (Ould, 2014) .

Definition 1.2.30. The orthogonal complement of a closed subspace M in a Hilbert space H

is defined as the subspace M⊥ which consists of all vectors in H that are orthogonal to every

vector in M ,that is M⊥ = {z ∈ H : (z, x) = 0 for all x ∈ M} (Furuta, 2001, Section 1.3) .
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1.2.1 Statement of the problem

Operators in Class (Q) and metrically equivalent operators are crucial in the telecommunications

industry because they use Quality of Service (QoS) mechanisms to ensure customers receive

specific service levels. These operators offer different Service Level Agreements (SLAs) based

on customer requirements. For example, customers needing high availability and low delays

receive higher SLAs compared to those with less stringent needs.

However, scalability is a significant challenge in this field. As network complexity and size

increase with higher traffic volumes and data, maintaining these service levels becomes difficult.

Our study addresses this issue by generalizing Class (Q) and metrically equivalent operators

into skew quasi-p-class (Q), Mutually class (Q), and posimetrically equivalent operators. This

generalization allows for handling more data, enabling the creation of more flexible and reusable

codes using supercomputers, thus reducing laborious processes.

1.2.2 General objective of the study

The general objective of the study was to introduce new classes of operators , that is , skew Quasi-

p-class(Q) operators , Posimetrically equivalent operators and Mutually class (Q) operators .

1.2.3 Specific objectives of the study

The specific objectives of the study are to :

1 . Analyse algebraic properties of skew quasi-p-class (Q) operators;

2 . Determine the relation of the class of posimetrically equivalent operators with other

equivalence relations;
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3 . Establish the relation of Mutually class (Q) operators with other classes.
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1.2.4 Significance of the study

The study of skew quasi-p-class (Q), posimetrically equivalent, and mutually class (Q) operators

could significantly impact the telecommunications industry. By leveraging their properties, it

may be possible to develop codes using supercomputers to manage network traffic flow. This

can be achieved by applying various Quality of Service (QoS) parameters within a broader

framework, as these operators generalize class (Q) operators.

QoS parameters are essential for evaluating the performance of different types of network

traffic. They include metrics such as packet loss during data transmission and bandwidth, which

measures the amount of data that can be transmitted over a network in a given time. Utilizing

these parameters can ensure that traffic is routed along the most efficient paths, thereby preventing

congestion and enhancing overall network performance.
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Chapter 2

Literature Review

The substantial growth in the investigation of operators within the traditional Hilbert spaceH has

resulted in the extensive expansion of the class of normal operators, leading to the emergence

of numerous subclasses. These subclasses, such as n-normal, perinormal , mutually-normal,

quasi-normal, quasi-p-normal, skew-normal, skew quasi-p-normal, and (n, m)-normal , have

been developed to capture specific properties exhibited by operators.

In the context of n-power normal operators, Jibril (2008) focused on this class and established

connections between 3-normal and 2-normal operators. It was demonstrated that if an operator,

denoted asG , is both one-to-one and satisfies the conditions of being 2-normal and 3-normal, then

it is a normal operator. Alzuraiqi and Patel (2016) delved into the realm of n-normal operators and

showed that this class is not essentially normal or hyponormal, uncovering intriguing properties

specific to this subclass.

Continuing the exploration of n-normal operators, Muneo and Biljana (2018) analysed the

spectral picture associated with this class. Their research outcomes demonstrated that the point

spectrum and approximate point spectrum of n-normal operators coincide, providing insights

into the spectral characteristics within this specific subclass.

Furthermore, Eiman and Mustafa (2016) investigated the class of (n,m)-normal operators,

further expanding the understanding of operators in the Hilbert space H. By linking these two

paragraphs, it becomes evident that the study of operators has progressed through the examination
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of various subclasses, each offering unique insights into the behaviour and properties of operators

in H.

Continuing with the generalization of normal operators, a further extension was made to

the class of (n,m)-normal operators. G is considered (n,m)-normal whenever G∗mGn = GnG∗m

for all 0 ≤ m,n . Eiman and Mustafa (2016) showed that this category exhibits a correlation

with the class of (n,m)-quasinormal operators, unveiling an intriguing association between these

subclasses .

Another significant contribution to the study of operators came from Mahmoud (2016) , who

introduced the concept of square-normal operators. He provided an example that distinguished

this class from the class of normal operators, highlighting their distinct properties. Additionally,

Mahmoud (2016) gave a condition for a normal operator to be classified as a square-normal

operator.

Veluchamy and Manikandan (2016) conducted a study on n-power quasi-normal operators

. It was observed that an operator G is considered n-power quasi-normal whenever it is self-

adjoint. Furthermore, it was expanded upon by establishing that the adjoint of an operator G is

an n-power quasinormal operator if and only if it satisfies both the conditions of being n-power

quasi-normal and self-adjoint. Taking the study of normal operators into deformed aspects,

Schoichi (2002) introduced the concept of q-deformed normal operators. If a densely defined

operator G on a Hilbert space H satisfies the equation qG∗G = GG∗, where q is a deformation

parameter and q is not equal to 1, it is classified as a q-deformed operator . Results linking this

class with other classes, such as q-quasinormal operators, were also discussed, expanding the
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understanding of deformed operator structures.

Expanding the analysis to the semi-Hilbertian space, Adel (2012) introduced the study of

normal operators in this context. An operator G ∈ BA(H) is labelled A-normal if [G♯,G] = 0 ,

where G♯ represents the adjoint of G. Notably, an A-normal operator is normal when G♯ = G∗

. Adel (2012) provided results concerning the inequality of this class, further advancing the

understanding of A-normal operators. The exploration of A-normal operators was extended

by Panayappan and Sivamani (2012) to A-quasinormal operators. In this case, an operator G ∈

BA(H) is considered A-quasinormal if G(G♯G) = (G♯G)G . Meenambika et al. (2018) delved into

the study of skew-normal , defining a bounded G as skew normal whenever (GG∗)G = G(G∗G)

. The characteristics of this category were explored, and a finding concerning the connection

between skew-normal operators and self-adjoint operators was presented.

Shifting focus to k-quasi-normal operators, Senthilkumar et al. (2012) conducted this study.

An operator G is said to be k-quasi-normal if G(G∗G)k = (G∗G)kG , where the multiplication

is prompted by Radon-Nikodym derivative with λ(Gk)−1 being the measure with regard to λ

. This class incorporated the concept of composition, composite multiplication, and weighted

composition operators.

Senthilkumar and Revathi (2019) further contributed to the field by studying Quasi-p-

normal operators and Quasi-n-p-normal operators. They characterized these classes in terms of

composition, composite multiplication, and weighted composition operators. A bounded linear

operator G is considered Quasi-p-normal if (G + G∗) commutes with G∗G .

The investigation of the spectrum of n-perinormal operators raised a concern regarding the
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equality of the joint approximate and the approximate spectrum of an n-perinormal (Mecheri &

Braha, 2012) . This concern was addressed by Hongliang and Fei (2014) who noted that indeed

the joint approximate and approximate spectrum of n-perinormal operators are equal. Hongliang

and Fei (2014) also covered the tensor products of the class of n-perinormal operators.

Further advancements were made by Wanjala and Adhiambo (2021) where they introduced

Furuta inequalities to the class of n-perinormal operators. They achieved this by introducing the

class of 2n-perinormal operators, where G∗2nG2n ≥ (G∗G)2n for all positive integers n and a

bounded G . This class was characterized in terms of isometric operators.

The exploration of the class of normal operators has led to the expansion into other

related classes such as hyponormal , square hyponormal, log hyponormal , and M-hyponormal

operators , among others. These classes relax the conditions for normality and provide a broader

understanding of operator properties.

Arora and Ramesh (1980) addressed some results related to M-hyponormal operators. It

was demonstrated that every isolated point within the spectrum of this class corresponds to an

eigenvalue of the operator. Additionally, the Weyl spectrum of G was found to be the same as the

similarity between the spectrum of G and its isolated points. Furthermore, a connection between

the class of M-hyponormal operators together with normal were established, demonstrating that

if a bounded operator G has a single limit point in its spectrum, it tends to be normal.

Ilyas and Reyaz (2012) studied classes related to p-hyponormal operators. An operator G

belonging to the bounded operators on Hilbert space H is classified as p-hyponormal whenever

the inequality (G∗G)p ≥ (GG∗)p holds true for non-negative p. They linked this class to ∗p-
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paranormal operators and monotonicity of ∗A(p, q) operators. The class ∗A(p, q) is defined as

|G|2q ≥ (|G|q|G∗|2p|G|q)
q

p+q for non-negative p and q.

Muneo et al. (2019) introduced square hyponormal operators and investigated their spectral

properties. An operator G is said to be square hyponormal if (G∗G)2 ≥ (GG∗)2 . It was shown

that this class satisfies the single value extension property, which means that it has unique

analytic solutions for certain equations. An operator G possess a single valued extension property

whenever every neighborhood U of xo at xo ∈ C , is the only analytic solution f for the equation

(G − x)f(x) = 0 for every x ∈ U is the constant function f ≡ 0 (Ould, 2014) .

Ould (2014) presented fascinating results touching on n-power quasi-normal and n-power

k-quasinormal operators. In particular, it was demonstrated that these classes possess single

value extension property thus exhibiting Bishop’s property. The single value extension property

ensures that unique analytic solutions exist for specific equations involving these operators.

Furthermore, Ould (2014) proved that the category of n-power k-quasi-normal is preserved

under unitary equivalence and scalar multiplication.

It is evident that the investigation of operators, whether in the conventional Hilbert space or

the semi-Hilbertian space, continues to expand and be characterized in diverse ways. The class

of (Q) operators, in particular, has garnered significant attention among researchers. The study

of (Q) operators has been intensified, diversified, and explored extensively. The objective of this

study is to further extend the examination of this particular class of operators.

Jibril (2010) introduced the class of (Q) operators and extensively investigated their intriguing

fundamental properties. The study by Jibril (2010) revealed notable characteristics of this class.
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For example, it was demonstrated that if G belongs to class (Q), then its adjoint is also a class (Q)

operator. Additionally, Jibril (2010) established that class (Q) operators converge to the strong

operator topology. Jibril (2010) also investigated several interrelationships between the class of

(Q) operators and other operator categories, such as quasinormal , θ-operators, isometry and

normal operators.

The class (Q) was characterized in terms of isometry where interesting properties were

covered (Jibril, 2010). Additionally, a counterexample was provided to illustrate that the converse

does not hold universally. Jibril (2010) also established a connection between this class and the

class of normal operators, demonstrating that if an operator G2 is both normal and belongs to

class (Q), then it is a normal operator. Furthermore, it was demonstrated that this class does not

preserve similarity.

Paramesh et al. (2019) expanded the notion of class (Q) operators by introducing the concept

of n-power class (Q) operators. The paper delved into the fundamental properties of this class

and presented a result demonstrating that it is not generally a normal operator (see example

3.4). Paramesh et al. (2019) also established a correlation between this class and the category of

n-normal operators.

As per Theorem 3.3 by Paramesh et al. (2019), if an operator G ∈ B(H) is categorized as

n-normal, it is also considered an n-power class (Q) operator. Moreover, according to Theorem

3.6 , if G is n-power class (Q) operator and G is quasi-n-normal, it can be categorized as an n+1

power class (Q) .

Manikandan and Veluchamy (2018) made a significant contribution by introducing (n+k)
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power class (Q), with n being a positive definite integer and 0 ≤ k. This new class was

accompanied by the characterization of new theorems. Notably, it was shown that if a bounded

operator G is (n+k)-normal, then it falls into the category of (n+k)-power class (Q) operators.

Furthermore, Manikandan and Veluchamy (2018) further advanced the results on (n+k) power

class (Q) class . Manikandan and Veluchamy (2018) characterized class (Q) operators in terms

of complex symmetric operators. As per Manikandan and Veluchamy (2018), Theorem 2.13 ,

whenever G is class (Q) in addition to being complex symmetric operator, then the equation

G2G∗2 = (GG∗)2 holds true.

Revathi and Maheswari (2019) introduced a new class called Quasi-class (Q) operators,

which builds upon the class (Q) operators. The paper investigated the basic properties of this

class and established interesting connections between Quasi-class (Q) operators and self-adjoint

operators.

According to Revathi and Maheswari (2019), Theorem 2.7 , if G is a self-adjoint operator

that is quasi-class (Q) with the existence of G−1, then G−1 is similarly quasi-class (Q). Theorem

2.8 by Revathi and Maheswari (2019) states that whenever G is a quasi-class (Q) with S being

self-adjoint that commutes with G, then SG is quasi-class (Q) .

Furthermore, Revathi and Maheswari (2019) in Theorem 2.11 established that for a self-

adjoint operator G and any operator S on H, the operator S∗GS is a quasi-class (Q) operator.

These results highlight the relationship between quasi-class (Q) operators and self-adjoint

operators. The paper also established connections between quasi-class (Q) operators and the

classes of quasi-normal operators and isometries. According to Theorem 2.9 by Revathi and
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Maheswari (2019) , if G ∈ B(H) is quasinormal, then G is classified as a quasi-class (Q)

operator. Similarly, Theorem 2.9 and Theorem 2.10 by Revathi and Maheswari (2019) states that

if G ∈ B(H) is an isometry, then G is also a quasi-class (Q) operator. These findings demonstrate

the relationship between quasi-class (Q) operators and other operator classes.

Later on Revathi and Maheswari (2019) extended quasi class (Q) into M-quasi class (Q)

where M is bounded on H . Similarly basic properties of this class were investigated . In

particular , results showed that the sum of two M quasi class (Q) and the product of two M quasi

class (Q) is still M quasi class (Q).

In their research , Wanjala and Nyongesa (2021) extended the study of class (Q) operators

to a new class called (α, β)-class (Q), where 0 ≤ α ≤ β ≤ 1. Wanjala and Nyongesa (2021)

explored several interesting algebraic properties of this class and made notable discoveries. One

such finding revealed that if an operator G is classified as (α, β)-class (Q), then its adjoint,

G∗ , also falls into the (α, β)-class (Q). The (α, β)-class (Q) was further connected to other

operator classes, including the (α, β)-normal operator . Additionally, the researchers established

a link between the (α, β)-class (Q) and unitary operators, presenting a characterization of the

(α, β)-class (Q) in terms of unitary operators. In their work , Wanjala and Adhiambo (2021)

observed that by relaxing the conditions for the class (Q) operators, it coincides with the class of

(M,n) operators, also known as almost class (Q) operators, when the parameter n is equivalent

to two .

Building upon the concept of almost class (Q) operators, Wanjala and Adhiambo (2021)

further generalized it to (n, m)-almost class (Q) . This generalization considered positive integers
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n and m, and the paper provided several results regarding this class. The remarkable discovery

was made that when an operator G is labeled as (n, m)-almost class (Q) and there is a unitary

operator S that is equivalent to G, then S also falls into the category of (n, m)-almost class

(Q). Additionally, Wanjala and Adhiambo (2021) presented some results related to (M,n) and

n-power hyponormal. These findings shed light on the properties and relationships of these

operator classes.

The concept of k∗-Quasi-n-class (Q) operators was introduced by Wanjala and Kiptoo (2021)

as an extension of class (Q) operators. The paper discussed the basic properties of this class and

various findings were presented.

Later on ,Wanjala and Adhiambo (2021) introduced the class of (BQ) operators . An operator

G is classified as (BQ) if the commutator of G∗2G2 with G∗G exists. The findings presented by

Wanjala and Adhiambo (2021) provided evidence that any operator which is unitarily equivalent

to a (BQ) operator is likewise categorized as (BQ). Additionally, they provided a result showing

that any operator belonging to the class (Q) is also in the (BQ) class. Wanjala and Adhiambo

(2021) extended the class of (BQ) operators to (nBQ) operators, considering positive integer

values of n. They made an intriguing discovery by establishing a connection between the (nBQ)

class and n-power class (Q) operators. Specifically, they demonstrated that if G is a complex

symmetric operator for which the commutator C commutes with (G∗G)2 , it implies G is n-power

class (Q) .

In the work by Wanjala and Nyongesa (2021) , a new class called (Q∗) operators was

introduced. A result by Wanjala and Nyongesa (2021) provided an example that illustrated (Q∗)
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class is distinct from the class (Q). Furthermore, Wanjala and Nyongesa (2021) presented a

significant result that established a connection between the (Q∗) class and square-hyponormal

operators. Through the characterization of (α , β)-class (Q) operators, there was demonstratation

for the relationship between the (Q∗) class and square-hyponormal operators.

In the work presented by Jibril (1999) , a new class called mutually normal operators was

introduced and thoroughly investigated. Results explored the intriguing properties of this class

and established connections between mutually normal operators and other operator classes.

Of particular interest was a result that demonstrated a relationship between mutually normal

and hyponormal operators. The paper provided insights into this connection, shedding light on

the interplay between these two classes of operators.

It is evident that there has been no prior research conducted on the class of skew-quasi-p-class

(Q) and mutually class (Q) operators. Therefore, this study aims to introduce and investigate

these two classes, namely skew-quasi-p-class (Q) and mutually class (Q) operators, by examining

their fundamental properties.

Furthermore, the study aims to establish connections between these two classes and other

general classes of operators. By exploring the relationships and inter-dependencies with other

operator classes, this research intends to provide a comprehensive understanding of the characteristics

and behavior of skew-quasi-p-class (Q) and mutually class (Q) operators.

The exploration of equivalent classes of operators has been a subject of study by numerous

authors. One such class is that of almost similarity . While studying almost similarity of operators

, Jibril (1996) provided intriguing results that characterized the class of almost similar operators
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in relation to normal operators.

Building upon the work done by Jibril (1996) , Musundi et al. (2013) further investigated

the class of almost similar operators and established that it possesses the property of being an

equivalence relation. This finding by Musundi et al. (2013) demonstrated the relationship and

equivalence among operators within the class of almost similar operators.

In his work, Sadoon (1996) focused on the concept of nearly equivalent operators. He defined

S ∈ B(H) and G ∈ B(H) being nearly equivalent if their respective self-adjoint products, S∗S

and G∗G , are similar. Furthermore , Sadoon (1996) investigated the class of nearly normal

operators. He provided an example that demonstrated that nearly normal operators are not

necessarily normal. Additionally, he presented a condition under which the notions of near

normality and normality coincide, suggesting that under certain conditions, these two properties

are considered equivalent for operators .

Nzimbi et al. (2013) conducted a study on the metric equivalence of operators. The

paper presented results that established connections between metric equivalence and other

general classes of operators. Notably, the class of metrically equivalent operators was found

to be linked to the classes of quasinormal and normal operators. Furthermore, Nzimbi et al.

(2013) provided several results that showcased the relationship between the class of metrically

equivalent operators and other equivalence relations, including unitary equivalence. These

findings contributed to a better understanding of the interplay between metric equivalence

and other forms of equivalence among operators.

In a subsequent work , Wanjala et al. (2020) extended the study of metrically equivalent
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operators to n-metric equivalent operators. The paper examined the properties of this class

and established its relationship with general classes such as quasinormal and k-quasinormal

operators. One notable result presented by Wanjala et al. (2020) addressed the condition under

which n-metric equivalence of operators becomes equivalent to metric equivalence, specifically

when the value of n is equal to two. This result provided insights into the connection between n-

metric equivalence and metric equivalence in certain cases. Furthermore, Wanjala et al. (2020)

established a link between n-metric equivalence and n-normal operators. This connection shed

light on the relationship between these two operator classes.

In a later study by Wanjala and Nyongesa (2021) , n-metrically equivalent concept was

extended and generalized to (n,m)-metrically equivalent class. This development led to the

discovery of several interesting findings, establishing connections between (n,m)-metrically

equivalent class and other important classes, including quasi-isometries and (n,m)-class (Q)

operators.

In a subsequent study by Wanjala and Adhiambo (2021) , the concept of n-metric equivalence

of operators was extended to the semi-Hilbertian space. This class of operators was thoroughly

investigated, and various properties were examined. Additionally, significant connections between

n-metric and the A-normal operators were established and analyzed. The findings from this

research shed light on the relationship between these two important classes of operators in the

semi-Hilbertian space.

From this literature review, it is evident that, just like the classes of skew-quasi-p-class

(Q) and Mutually class (Q) operators, no research has been conducted on the intriguing
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class of posimetrically equivalent operators. Thus, the primary objective of this study is to

introduce and investigate the class of posimetrically equivalent operators, unveiling their inherent

characteristics and establishing their connections to various general classes and equivalent

classes. This research aims to fill the existing gap in the literature and contribute to a deeper

understanding of this unexplored class of operators.
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Chapter 3

Research Methodology

3.1 Introduction

In pursuit of our specific objectives, we employed various methodologies, including the utilization

of properties of normal operators, n-normal operators, isometries, unitary operators, adjoint

operators related operators, as well as classes related to metrically equivalent operators like n-

metrically equivalent operators. Throughout the study, we examined the essential properties of

unitary operators and adjoint operators. To establish these properties, we relied on well-known

Theorems, Propositions, and Corollaries which we restate here .

3.2 Fundamental principles

The following well known results were useful in our results .

Theorem 3.2.1. Suppose S ∈ B(H) is an n-normal operator. In that case, S is both isoloid and

polaroid (Muneo et al., 2018) .

Theorem 3.2.2. If S is an n-power normal operator, it satisfies Bishop’s property (Stella &

Vijayalakshmi, 2015 , Theorem 2.5) .

Theorem 3.2.3. If T is an operator onH, it follows that T ∗ is equally an operator on the Hilbert

space H and the following are true :

(a) ∥T ∗∥ = ∥T ∥ .

(b) (T1 + T2)
∗ = T ∗

1 + T ∗
2 .
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(c) (αT )∗ = α T ∗ for every α ∈ C .

(d) (T ∗)∗ = T .

(e) (ST )∗ = T ∗S∗ (Furuta, 2001, Section 2.2.1) .

3.2.1 n-metric equivalence of operators

In this section , we restate some results of n-metrically equivalent operators as covered by

Wanjala et al. (2020) that are useful in our findings .

Theorem 3.2.4. If S is an n-normal operator and T ∈ B(H) is unitarily equivalent to S, then

T is an n-normal ( Wanjala et al., 2020, Theorem 2.1) .

Corollary 3.2.5. An operator T ∈ B(H) is an n-normal if and only if T and T ∗ are n-metrically

equivalent ( Wanjala et al., 2020, Corollary 2.2) .

Theorem 3.2.6. IfS and T are unitarily 2-metrically equivalent operators andS is quasinormal

, then T is quasinormal ( Wanjala et al., 2020, Theorem 3.2) .

Theorem 3.2.7. If S and T are unitarily 2-metrically equivalent operators then they are

metrically equivalent provided they are idempotent ( Wanjala et al., 2020, Theorem 3.3) .

3.2.2 n,m-metrically equivalent operators.

In this section , we restate some results of (n,m)-metrically equivalent operators as covered by

Wanjala and Nyongesa (2021) that are useful in our findings .

Theorem 3.2.8. If S is an (n,m)-normal operator and T ∈ B(H) is unitarily equivalent to S

,then T is an (n,m)-normal (Wanjala & Nyongesa, 2021 , Theorem 2.1) .
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Corollary 3.2.9. An operator T ∈ B(H) is (n,m)-normal if and only if T and T ∗ are (n,m)-

metrically equivalent (Wanjala & Nyongesa, 2021 , Corollary 2.2) .
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Chapter 4

Skew Quasi-P-Class (Q) Operator

4.1 Introduction

In this chapter, we focus on our first objective, which is the study of Skew-Quasi-P-Class (Q).

We delve into the properties of this class and explore its connections and relationships with

other operator classes such as quasi-p-normal and (n,m)-normal. Throughout the chapter, we

provide a comprehensive analysis of the Skew-Quasi-P-Class (Q), shedding light on its unique

characteristics and its interplay with other classes in the field of operator theory.

Definition 4.1.1. T ∈ B(H) is skew quasi-p-class (Q) whenever (T ∗2T 2)(T + T ∗) = (T +

T ∗)(T ∗T )2. We shall denote this class as [V ] .

Theorem 4.1.1. Let T ∈ [V ] , then so are any ;

1. ψT for any ψ ∈ R.

2. Every S ∈ B(H) unitarily equivalent to T .

Proof.
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(i). Let T ∈ [V ] , then ;

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2 (4.1)

= ((ψT )∗2(ψT )2)(ψT + (ψT )∗) (4.2)

= ψ
2T ∗2ψ2T 2(ψT + ψT ∗) (4.3)

= ψ5(T ∗2T 2)(T + T ∗) (4.4)

and;

= (ψT + (ψT )∗)((ψT )∗ψT )2 (4.5)

= (ψT + ψT ∗)ψ2ψ
2
(T ∗T )2 (4.6)

= ψ5(T + T ∗)(T ∗T )2. (4.7)

hence from 4.4 and 4.7 ψT is skew quasi-p-class (Q) .

(ii). Suppose S ∈ B(H) is unitarily equivalent to T , ∃ unitary operator U ∈ B(H) such that

T = U∗SU . Then ;

(T ∗2T 2)(T + T ∗) = (U∗SU + U∗S∗U)(U∗S∗UU∗S∗UU∗SUU∗SU) (4.8)

= (U∗SU + U∗S∗U)(U∗S∗2S2U) (4.9)

= (T U∗U + T ∗U∗U)(T ∗2U∗UT 2) (4.10)

= (T + T ∗)(T ∗T )2. (4.11)

Since (T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2

then;

(S∗2S2)(S + S∗) = (S + S∗)(S∗S)2.
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Theorem 4.1.2. Let T be a self-adjoint , then T ∈ [V ].

Proof. Suppose T ∈ [V ] ;

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2

= (T 2T 2)(T + T ) = 2T 5 (4.12)

= (T + T )(T T )2 = 2T 5 (4.13)

From 4.12 and 4.13 ; T is skew quasi-p-class (Q) operator.

Remark 4.1.1. The counterexample below shows that the class of skew quasi-p-class (Q) does

not preserve operator similarity. This highlights a limitation in the preservation of similarity

within the class, emphasizing the importance of considering the specific properties of operators

within the skew quasi-p-class (Q).

Example 4.1.1. Let T be an operator acting on R2 such that T =

 eIn(2) eiπ + 1

eiπ + 1 e2In(2)

 and X

=

e2In(2) eIn(2)

eIn(2) eIn(2)

 . It is easy to verify that ;

(T ∗2T 2) (T +T ∗)=

 eIn(64) eiπ + 1

eiπ + 1 eIn(2048)

= (T +T ∗)(T ∗T )2 hence is skew quasi-p-class

(Q). Now let ;

XT X−1 =

eiπ + 1 eIn(16)

eIn(−8) eIn(24)

 = M (say); it is easily seen that ;
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(M∗2M2)(M+M∗) =

eIn(−491520) eIn(−2719744)

eIn(1015808) eIn(5603328)

 and

(M + M∗)(M∗M)2 =

eIn(−1376256) eIn(5832704)

eIn(−7929856) eIn(33619968)

 implies (M∗2M2)(M + M∗) ̸=

(M+M∗)(M∗M)2 hence does not preserve similarity .

Theorem 4.1.3. If T ∈ B(H) , then (T 2T ∗2)(T ∗ + T ) = (T ∗ + T )(T T ∗)2.

Proof. Since T ∈ [V ] , then by Theorem 4.1.2 so is T ∗;

thus ;

((T ∗)∗2(T ∗)2)((T ∗)∗ + T ∗) = (T ∗ + (T ∗)∗)(T ∗)∗T ∗)2

implies that (T 2T ∗2)(T ∗ + T ) = (T ∗ + T )(T T ∗)2.

Theorem 4.1.4. Let T ∈ B(H) , it follows ;

(a) T + T ∗ ∈ [V ].

(b) (T ∗T )2 ∈ [V ].

(c) T ∗2T 2 ∈ [V ].

(d) I + T ∗2T 2 , I + (T ∗T )2 ∈ [V ].

Proof. (a). Let R = T + T ∗ ,

implies R∗ = (T + T ∗)∗

= T ∗ + T ∗∗ = T ∗ + T = T + T ∗ = R.

R is self-adjoint and from Theorem 4.1.2 , R ∈ [V ].

(b). (T ∗T )2 = (T ∗T )∗2 = (T ∗∗T ∗)2 = (T T ∗)2
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(c). T ∗2T 2 = (T ∗2T 2)∗ = T ∗∗2T ∗2 = T 2T ∗2 = T ∗2T 2

(d). (I + T ∗2T 2) = (I + T ∗2T 2)∗ = I∗ + T ∗∗2T ∗2 = I + T 2T ∗2

and I + (T ∗T )2 = I∗ + (T ∗T )∗2 = I + (T T ∗)2

and the proof for (b) , (c) and (d) follows similarly from Theorem 4.1.2

Remark 4.1.2. In Theorem 3.2.7 , properties of idempotent operators were used to establish

a connection between the class of 2-metrically equivalent operators and metrically equivalent

operators. Similarly, in this case, we utilize both idempotent and self-adjoint properties to

establish a connection between the class [V] and (n,m)-normal operators.

Theorem 4.1.5. Let T ∈ B(H) be both self-adjoint and idempotent , if T ∈ [V ] , then it’s an

(n,m)-normal operator.

Proof. suppose T ∈ [V ] ;

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2

(T ∗2T 2)(T + T ∗) = T ∗2T 2T + T ∗2T 2T ∗

= T ∗2T 2 + T ∗2T T ∗ ( Since T is idempotent)

= T ∗2T 2 + T ∗2T 2 ( Since T is self-adjoint)

= 2T ∗2T 2 (4.14)

Similarly ; (T + T ∗)(T ∗T )2 ;

(T ∗T )2T + (T ∗T )2T ∗

= T ∗2T 2T + T ∗2T 2T ∗
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= T ∗2T 2 + T ∗2T 2 ( Since T is idempotent and self-adjoint)

= T 2T ∗2 + T 2T ∗2

= 2T 2T ∗2 (4.15)

From 4.14 and 4.15 we have ;

T ∗2T 2 = T 2T ∗2 thus T is an (n,m)-normal operator ; specifically a (2,2)-normal operator.

Theorem 4.1.6. Let T ∈ B(H) be a Quasi-Isometry and an Isometry, then T ∈ [V ].

Proof. By definition T ∗2T 2 = T ∗T = I ;

then

(T ∗2T 2)(T + T ∗) = T ∗T (T + T ∗) = I(T + T ∗) = (T + T ∗) (4.16)

and ;

(T + T ∗)(T ∗T )2 = (T + T ∗)(I)2 = (T + T ∗)I = (T + T ∗) (4.17)

4.16 and 4.17 points to T ∈ [V ].

Theorem 4.1.7. Let T ∈ [V ] , if T is a class (Q) and Quasi-Isometry , then it is a θ-operator.

Proof. By definition ;

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2

Since T is a Quasi-Isometry , then ;

T ∗T (T + T ∗) = (T + T ∗)T ∗T as required.
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Remark 4.1.3. The result below establishes a correlation between quasi-p-normal operators

and skew quasi-p-class (Q) operators. The result unveils the connection between these two

classes of operators, shedding light on how quasi-p-normal operators are associated with the

skew quasi-p-class (Q).

Theorem 4.1.8. If T ∈ B(H) is quasi-p-normal operator , then it is in [V ].

Proof. Let T be quasi-p-normal , then ;

(T + T ∗)(T ∗T ) = (T ∗T )(T + T ∗) (4.18)

T T ∗T + T ∗2T = T ∗T 2 + T ∗2T (4.19)

T ∗T 2 + T ∗2T = T ∗T 2 + T ∗2T (4.20)

pre-multiplying T T ∗ and post-multiplying T T ∗ on both sides ;

T ∗2T 3 + T ∗3T 2 = T ∗2T 3 + T ∗3T 2 (4.21)

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗2T 2) (4.22)

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2 (4.23)

hence T ∈ [V ].

Definition 4.1.2. Let T ∈ B(H) such that it satisfies (T ∗2T 2)(T n+T ∗n) = (T n+T ∗n)(T ∗T )2

where n is a positive integer , then T is a skew quasi-n-p-class (Q) operator .

Theorem 4.1.9. Let T ∈ B(H) , if ξ commutes with C and ζ commutes with with D and ξ2T =

T ξ2 , then T is skew quasi-p-class (Q) where ξ2 = (T ∗2T 2)(T + T ∗), ζ2 = (T + T ∗)(T ∗2T 2)

, C = Re(T ) = T +T ∗

2
and D = Im(T ) = T −T ∗

2i
.

33



Proof. Since ξC = C ξ , ζ D = D ζ; Then ξ2 C = Cξ2 and ζ2D = Dζ2 , so ;

ξ2T + ξ2T ∗ = T ξ2 + T ∗ξ2 (4.24)

ξ2T − ξ2T ∗ = T ξ2 − ξ2T ∗ (4.25)

T ξ2 = ξ2T (4.26)

T (T ∗2T 2)(T + T ∗) = T (T + T ∗)(T ∗T )2 (4.27)

(T ∗2T 2)(T 2 + T ∗2) = (T 2 + T ∗2)(T ∗T )2 (4.28)

Similarly with ζ2D =D ζ2 , we get ;

ζ2T − ζ2T ∗ = T ζ2 − T ∗ζ2 (4.29)

T ζ2 = ζ2T (4.30)

T (T ∗T )2(T + T ∗) = (T + T ∗)(T ∗T )2T (4.31)

(T ∗T )2(T 2 + T ∗2) = (T 2 + T ∗2)(T ∗2T 2) (4.32)

(T ∗2T 2)(T 2 + T ∗2) = (T 2 + T ∗2)(T ∗T )2 (4.33)

hence T is skew quasi-2-p-class (Q) operator.

Theorem 4.1.10. Let T1 , T2 ∈ B(H) be skew quasi-p-class (Q) operators such that T ∗2
1 T 2

2 =

T ∗2
2 T 2

1 = T ∗2
1 T1 = T ∗2

2 T1 = T ∗2
2 T ∗

1 = 0 , then T1 + T2 is skew quasi-p-class (Q) operator.
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Proof. By assumption , T1 and T2 are skew quasi-p-class (Q) operators , then ;

((T1 + T2)
∗2(T1 + T2)

2)((T1 + T2) + (T1 + T2)
∗) (4.34)

= ((T ∗2
1 + T ∗2

2 )(T 2
1 + T 2

2 ))((T1 + T2) + (T ∗
1 + T ∗

2 )) (4.35)

= (T ∗2
1 + T ∗2

2 )(T 2
1 + T 2

2 ))(T1 + T2 + T ∗
1 + T ∗

2 ) (4.36)

= (T ∗2
1 T 2

1 + (T ∗2
1 T 2

2 + T ∗2
2 T 2

1 + T ∗2
2 T2)(T1 + T2 + T ∗

1 + T ∗
2 ) (4.37)

Since T ∗2
1 T 2

2 = T ∗2
2 T 2

1 = 0

(T ∗2
1 T 2

1 + T ∗2
2 T2)(T1 + T2 + T ∗

1 + T ∗
2 ) (4.38)

= T ∗2
1 T 2

1 T1 + T ∗2
1 T 2

1 T2 + T ∗2
1 T 2

1 T ∗
1 + T ∗2

1 T 2
1 T ∗

2 + T ∗2
2 T 2

2 + T ∗2
2 T 2

2 T1 + T ∗2
2 T 2

2 T2T ∗
1 + T ∗2

2 T 2
2 T ∗

2

(4.39)

Since T ∗2
1 T1 = T ∗2

2 T1 = T ∗2
2 T ∗

1 =0 ;

= T ∗2
1 T 2

2 T1 + T ∗2
1 T 2

2 T2 + T ∗2
1 T 2

2 T ∗
1 + T ∗2

1 T 2
2 T ∗

2 (4.40)

= (T 2
2 T1 + T 2

2 T2 + T 2
2 T ∗

1 + T 2
2 T ∗

2 )T ∗2
1 (4.41)

= (T1 + T2 + T ∗
1 + T ∗

2 )(T ∗2
1 T 2

2 ) (4.42)

= ((T1 + T2) + (T1 + T2)
∗)(T ∗

1 T2)
2 (4.43)

hence T1 + T2 is skew quasi-p-class (Q) operator.

Corollary 4.1.11. Let T1 , T2 ∈ B(H) be skew quasi-p-class (Q) operators such that T ∗2
1 T 2

2 =

T ∗2
2 T 2

1 = T ∗2
1 T1 = T ∗2

2 T1 = T ∗2
2 T ∗

1 = 0 , then T1 - T2 is skew quasi-p-class (Q) operator.

Proof. The proof follows directly from Theorem 4.1.10.

Theorem 4.1.12. Let T = U|T | be the polar decomposition of T ∈ B(H) , then T ∈ [V ] if

|T |U = U|T |.
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Proof. Let T ∈ [V ], then ,

[(T ∗2T 2)(T + T ∗)]− [(T + T ∗)(T ∗T )2] = 0 (4.44)

= ((U∗|T |2U|T |2)(U|T |+ U∗|T |))− ((U|T |+ U∗|T |)(U∗|T |U|T |)2) (4.45)

= (|T |2(U∗U|T |2)(U|T |+ U∗|T |))− ((U|T |+ U∗|T |)(|T |U∗U|T |)2) (4.46)

= (|T |4((U|T |+ U∗|T |))− ((U|T |+ U∗|T |)|T |4) (4.47)

= U|T |5 + U∗|T |5 − U|T |5 − U∗|T |5 = 0. (4.48)

hence we get ; (T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2 and thus T ∈ [V ].

Theorem 4.1.13. Let T ∈ B(H) be T ∈ [V ] , then T is a class (Q) if its unitary.

Proof. T being skew quasi-p-class (Q) , implies ;

T ∗2T 2(T + T ∗)

= (T + T ∗)(T ∗T )2. (4.49)

pre-multiplying and post-multiplying 4.49 by T ∗ and T respectively we have ;

T ∗2T 2(T ∗T + T T ∗) = (T ∗T + T ∗T )(T ∗T )2

T ∗2T 2 = (T ∗T )2 as desired.

Theorem 4.1.14. Let T ∈ B(H) be T ∈ [V ] . If T is both 2-self-adjoint and self-adjoint it

follows it’s an n-quasinormal operator.

Proof. By definition ;

T ∗2T 2(T + T ∗) = (T + T ∗)(T ∗T )2.

Now suppose T is both 2-self adjoint and self adjoint , then ;
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T ∗2 = T 2 = T ∗ = T ; hence ;

(T ∗T )T 2 = T 2(T ∗2T 2)

(T ∗T )T 2 = T 2(T ∗T )

T 2(T ∗T ) = (T ∗T )T 2. Hence T is an n-quasinormal operator for n=2.

Theorem 4.1.15. Let T ∈ B(H) be a unitary operator such that T ∈ [V ]. If T is both a

quasi-isometry and self-adjoint , then it’s an n-normal operator.

Proof. Since T ∈ [V ] we have ;

(T ∗2T 2)(T + T ∗) = (T + T ∗)(T ∗T )2

by Theorem 4.1.13 we have ;

T ∗2T 2(T + T ∗) = (T + T ∗)T ∗2T 2.

suppose T is a quasi-isometry , then ;

T ∗T (T + T ∗) = (T + T ∗)T ∗T

similarly , if T is self-adjoint then we have ;

T ∗T (T + T ) = (T + T )T ∗T

2T ∗T 2 = 2T 2T ∗

T ∗T 2 = T 2T ∗ hence T is an n-normal operator for n=2.

Corollary 4.1.16. If T ∈ [V ] is such that its both a Quasi-Isometry and self-adjoint , then it’s

isoloid and polaroid.

Proof. The proof follows from Theorem 3.2.1 and Theorem 4.1.15 respectively .

Theorem 4.1.17. Let T ∈ B(H) be a self-adjoint skew quasi-p-class (Q) operator . Then T is
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an (n,p)-quasinormal operator provided it is unitary.

Proof. By definition ;

T ∗2T 2(T + T ∗) = (T + T ∗)(T ∗T )2

since T is class (Q) by Theorem 4.1.13 ,

(T ∗T )2(T + T ∗) = (T + T ∗)(T ∗T )2

T being self-adjoint ensures ,

T (T ∗T )2 = (T ∗T )2T

hence T is (n,p)-quasinormal operator for n=1 and p=2 .

Theorem 4.1.18. If T ∈ [V ] such that it’s both Quasi-Isometry and self-adjoint , then it has

Bishop’s property (property β).

Proof. By Theorem 4.1.15 , T is an n-normal operator and by Theorem 3.2.2 , the proof follows

for T .
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Chapter 5

Posimetrically Equivalent Operators

5.1 Introduction

This chapter focuses on our second objective, which involves studying the class of Posimetrically

equivalent operators. We extensively analyze the properties of this class and explore its connections

and relationships with other classes of operators. Throughout the chapter, we conduct a thorough

examination of Posimetrically equivalent operators, providing a detailed understanding of their

distinct characteristics and how they relate to other classes .

Definition 5.1.1. Two operators S ∈ B(H) and T ∈ B(H) are said to be Posimetrically

equivalent denoted by S ∼p T if (S∗S) (S + S∗) = (T ∗T ) (T + T ∗).

Remark 5.1.1. Similar to Theorem 3.2.8 and Corollary 3.2.9, where (n,m)-normality was

established for the class of (n,m)-metrically equivalent operators, we also establish quasi-p-

normality for the class of posimetrically equivalent operators in the subsequent results. These

results demonstrate the connection between quasi-p-normality and posimetric equivalence,

providing insights into the properties and behaviors of operators within these operator classes.

Theorem 5.1.1. If T is quasi-p-normal and S ∈ B(H) is unitarily equivalent to T , then S is

quasi-p-normal.

Proof. Suppose S = U∗T U where U is unitary and S is quasi-p-normal , then
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(S∗S)(S + S∗) = ((U∗T ∗U)(U∗T U))(U∗T U + U∗T ∗U) (5.1)

= ((U∗T ∗UU∗T U)(U∗T U + U∗T ∗U) (5.2)

= (U∗T ∗T U)(U∗T U + U∗T ∗U) (5.3)

= (U∗T U + U∗T ∗U)(U∗T ∗T U) (5.4)

= (SU∗U + S∗U∗U)(S∗U∗US) (5.5)

= (S + S∗)(S∗S). (5.6)

hence the proof.

Corollary 5.1.2. An operator S ∈ B(H) is quasi-p-normal if and only if S and S∗ are

Posimetrically equivalent.

Proof. The proof follows from Theorem 5.1.1

Proposition 5.1.1. Let S, T ∈ B(H) be bounded linear operators with S ∼p T , then ;

1. S is isometric whenever T is isometric

2. S is a contraction whenever T is a contraction

3. λS and λT are Posimetrically equivalent for any λ ∈ R

4. The restriction S⧸M of S and T ⧸M of T to any closed subspace M of H that reduces

S
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Proof. Proof for 1 and 2 is trivial ;

for 3 ; since S and T are Posimetrically equivalent we have ;

(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.7)

= ((λS)∗(λS))(λS + (λS)∗) = ((λT )∗(λT ))(λT + (λT )∗) (5.8)

= λ2(S∗S)λ(S + S∗) = λ2(T ∗T )λ(T + T ∗) since λ ∈ R, λ = λ∗ (5.9)

= λ3(S∗S)(S + S∗) = λ3(T ∗T )(T + T ∗) (5.10)

from 5.7 and 5.10 λS and λT are Posimetrically equivalent.

For 4 ;

((S⧸M)∗(S⧸M))((S⧸M) + (S⧸M)∗) = ((T ⧸M)∗(T ⧸M))((T ⧸M) + (T ⧸M)∗)
(5.11)

(S∗S⧸M)(S⧸M+ S∗⧸M) = (T ∗T ⧸M)(T ⧸M+ T ∗⧸M) (5.12)

((S∗S)(S + S∗))⧸M = ((T ∗T )(T + T ∗))⧸M (5.13)

(S∗S)⧸M(S + S∗)⧸M = (T ∗T )⧸M(T + T ∗)⧸M (5.14)

((S∗)⧸M(S)⧸M)((S⧸M) + (S∗⧸M)) = ((T ∗⧸M)(T )⧸M))((T ⧸M) + (T ∗⧸M))
(5.15)

Theorem 5.1.3. Let S, T ∈ B(H) be posimetrically equivalent. If S and T are complex

symmetric operators , then (S∗S)(S + S∗) = (T ∗T )(T + T ∗) holds.

Proof. If S and T are complex symmetric operators , then ; S∗ = CSC , S = CS∗C and T ∗ =

41



CT C , T = CT ∗C with C2 = I . It then implies that

(S∗S)(S + S∗) = (CSCCS∗C)(CS∗C + CSC) (5.16)

= (CSS∗C)(CS∗ + SC) (5.17)

= (CS∗SC)(CS + S∗C) (5.18)

= (C(S∗S))((S + S∗)C) (5.19)

= C2(S∗S)(S + S∗) (5.20)

Similarly ;

(T ∗T )(T + T ∗) = (CT CCT ∗C)(CT ∗C + CT C) (5.21)

= (CT T ∗C)(CT ∗ + T C) (5.22)

= (CT ∗T C)(CT + T ∗C) (5.23)

= (C(T ∗T ))((T + T ∗)C) (5.24)

= C2(T ∗T )(T + T ∗) (5.25)

From 5.20 and 5.25 we get ;

C2(S∗S)(S + S∗) = C2(T ∗T )(T + T ∗) (5.26)

(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.27)

As required.

Proposition 5.1.2. Let S, T ∈ B(H), such that ζ = (S∗S) - (S+S∗),ϑ = (S∗S) + (S+S∗) and

η = (T ∗T ) - (T + T ∗),ψ = (T ∗T ) + (T + T ∗) . Then S and T are Posimetrically equivalent

if ζϑ = ηψ.
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Proof.

ζϑ = ηψ. (5.28)

ζϑ = ((S∗S)− (S + S∗))((S∗S) + (S + S∗)). (5.29)

A simple computation of 5.29 gives us ; (S∗S)(S + S∗)

ηψ = ((T ∗T )− (T + T ∗))((T ∗T ) + (T + T ∗)). (5.30)

A simple computation of 5.30 gives us ; (T ∗T )(T + T ∗)

From 5.29 and 5.30

ζϑ = ηψ (5.31)

(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.32)

hence S and T are Posimetrically equivalent

Theorem 5.1.4. If S and T are Posimetrically equivalent with polar decompositions S = U| S |

and T = U| T | , then | S |3 = | T |3 if and only if U|S| = |S|U and U|T | = |T |U .

Proof. Since S and T are Posimetrically equivalent ;
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(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.33)

(U∗ | S | U | S |)(U | S | +U∗ | S |) = (U∗ | T | U | T |)(U | T | +U∗ | T |) (5.34)

(| S | U∗U | S |)(U | S | +U∗ | S |) = (| T | U∗U | T |)(U | T | +U∗ | T |) (5.35)

(| S |2)(U | S | +U∗ | S |) = (| T |2)(U | T | +U∗ | T |) (5.36)

U | S |3 +U∗ | S |3 = U | T |3 +U∗ | T |3 (5.37)

U | S |3 + | S |3 U∗ = U | T |3 + | T |3 U∗ (5.38)

pre-multiplying both the left and right hand side of 5.38 by U∗ and post-multiplying the same

by U ;

U∗U | S |3 + | S |3 U∗U = U∗U | T |3 + | T |3 U∗U (5.39)

2 | S |3 = 2 | T |3 (5.40)

| S |3 =| T |3 (5.41)

hence the proof.

5.1.1 The correlation between Posimetric equivalence and other equivalence relations.

Remark 5.1.2. The following result establishes the connection between Posimetric equivalence

and 2-metric equivalence, which is a subclass of n-metrically equivalent operators. Specifically,

the result shows that if two operators are Posimetrically equivalent and self-adjoint, then they

are also 2-metrically equivalent. This highlights the relationship between these two types
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of equivalence and emphasizes the condition of self-adjointness in establishing the 2-metric

equivalence property.

Theorem 5.1.5. If S, T ∈ B(H) are Posimetrically equivalent ,then they are 2-metrically

equivalent provided S and T are self-adjoint.

Proof. By assumption ;

(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.42)

since S and T are self-adjoint ;

(S∗S)(S + S) = (T ∗T )(T + T ) (5.43)

2(S∗S)S = 2(T ∗T )T (5.44)

S∗S2 = T ∗T 2 (5.45)

Remark 5.1.3. The following result establishes the connection between the class of Posimetrically

equivalent operators and the class of metrically equivalent operators. Specifically, it states that

if two operators are Posimetrically equivalent and also idempotent, then they are also metrically

equivalent. This result highlights the relationship between these two classes of operators and

emphasizes the condition of idempotence in establishing the metric equivalence property.

Theorem 5.1.6. Let S, T ∈ B(H) be Posimetrically equivalent , then they are metrically

equivalent provided they are idempotent.
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Proof. Since S and T are Posimetrically equivalent , we have ;

(S∗S)(S + S∗) = (T ∗T )(T + T ∗) (5.46)

(S∗SS) + (S∗SS∗) = (T ∗T T ) + (T ∗T T ∗) (5.47)

(S∗S2) + (S∗2S) = (T ∗T 2) + (T ∗2T ) (5.48)

Since S and T are idempotent ; S = SS , S∗ = S∗S∗ and T = T T , T ∗ = T ∗T ∗ , hence ;

(S∗S) + (S∗S) = (T ∗T ) + (T ∗T ) (5.49)

2(S∗S) = 2(T ∗T ) (5.50)

S∗S = T ∗T . (5.51)

hence the proof.

Remark 5.1.4. The result below establishes the relationship between posimetrically equivalent

operators and almost similarly equivalent operators.

Theorem 5.1.7. Let S, T ∈ B(H) be two similar Posimetrically equivalent operators , then they

are almost similarly equivalent provided they are isometries and S + S∗ = S∗ + S and T + T ∗

= T ∗ + T .

Proof. Since S and T are similar Posimetrically equivalent , then there exists an invertible
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operator N such that ;

(S∗S)(S + S∗) = N−1((T ∗T )(T + T ∗))N (5.52)

S∗SS + S∗SS∗ = N−1(T ∗T T + T ∗T T ∗)N (5.53)

Pre-multiplying and post-multiplying both the left hand side of 5.53 by S∗ and S and right hand

side by T ∗ and T respectively we get ;

S∗S∗SS + S∗SS∗S = N−1(T ∗T ∗T T + T ∗T T ∗T )N (5.54)

S∗2S2 + S∗2S2 = N−1(T ∗2T 2 + T ∗2T 2)N (5.55)

(S∗S)(S∗S + S∗S) = N−1((T ∗T )(T ∗T + T ∗T ))N (5.56)

Since S and T are isometries ;

S∗S(2I) = N−1(T ∗T )(2I)N (5.57)

S∗S = N−1(T ∗T )N (5.58)

Similarly ;

(S∗S)(S + S∗) = N−1((T ∗T )(T + T ∗))N (5.59)

Since S and T are isometries ;

I(S + S∗) = N−1(I(T + T ∗))N (5.60)

S + S∗ = N−1(T + T ∗)N (5.61)

S∗ + S = N−1(T ∗ + T )N (5.62)

From 5.58 and 5.62 , S and T are almost similarly equivalent.
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Chapter 6

Mutually Class (Q) Operators

6.1 Introduction

This chapter centers around our third objective, which involves studying the Mutually Class (Q)

operators. We conduct a comprehensive analysis of this operator class, thoroughly exploring its

properties and investigating its connections with other classes. Throughout the chapter, we delve

deep into the unique characteristics of the Mutually Class (Q) operators and examine how they

interact with other operator classes.

Definition 6.1.1. G and P are said to be mutually class (Q) if (G∗G)2 = P∗2P2 and G∗2G2 =

(P∗P)2 . We denote this class by GmQP .

Theorem 6.1.1. If G,P ∈ B(H) such that GmQP , then GP and PG are class (Q) operators .

Proof. Since GmQP ,

(G∗G)2 = P∗2P2 (6.1)

G∗2G2 = (P∗P)2 (6.2)

6.1 and 6.2 implies ;

(GP)∗2(GP)2 = (PG)∗2(PG)2

= P∗2G∗2P2G2

= P∗2P2G∗2G2
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= P∗2P2(P∗P)2

= P∗2P2P∗2P2

= (G∗G)2(G∗G)2

= G2P2G∗2P∗2

= G∗2P∗2G2P2

= (GP)∗2(GP)2

= ((GP)∗(GP))2.

hence GP is class (Q) and on the same note PG is class (Q).

Theorem 6.1.2. If G,P ∈ B(H) such that GP = PG and GmQP , then G and P are class (Q)

operators .

Proof. GP = PG implies G∗P∗ = P∗G∗ ,

hence G∗2(P∗P)2G2 = P∗2

(G∗G)2P2 (6.3)

GmQP implies ;

G∗2G2 = (P∗P)2 and (G∗G)2 = P∗2P2 , replacing in 6.3 , we obtain ;

G∗2G∗2G2G2 = P∗2P∗2P2P2 = G∗2G∗2G2G2

(G∗G)4 = G∗2G2(G∗G)2

(G∗G)2 = G∗2G2 implying that G is class (Q). Proof for P follows suit .

Theorem 6.1.3. If G,P ∈ B(H) are almost class (Q) such that GmQP , then G and P are class

(Q).
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Proof. G being almost class (Q) , we have G∗2G2 ≥ (G∗G)2 . GmQP implies G∗2G2 = (P∗P)2

and (G∗G)2 = P∗2P2 ,hence (P∗P)2 ≥ P∗2P2 . P being almost class (Q) implies P∗2P2 ≥

(P∗P)2. Hence P∗2P2 = (P∗P)2 implying P is class (Q).

Theorem 6.1.4. Let G,P ∈ B(H) be GmQP , then they are 2,2-metrically equivalent if and

only if G and P are class (Q).

Proof. Let G and P be (2,2)-metrically equivalent , G∗2G2 = P∗2P2. Since GmQP , G∗2G2 =

(P∗P)2 implies P∗2P2 = (P∗P)2 hence P is class (Q). On the converse , let G and P be class

(Q) ,then G∗2G2 = (G∗G)2 and P∗2P2 = (P∗P)2 . Since GmQP ,we have ; P∗2P2 = (G∗G)2 =

G∗2G2 hence G and P are (2,2)-metrically equivalent .

Theorem 6.1.5. Let G,P ∈ B(H) be such that GP = PG ; if G and P are 2- Isometries and

GmQP , then G and P are metrically equivalent .

Proof. G and P being 2-Isometries implies ;

G∗2G2 − 2G∗G + I = 0 and P∗2P2 − 2P∗P + I = 0. Since GmQP ; G∗2G2 = (P∗P)2 and

P∗2P2 = (G∗G)2. Hence ;

2G∗G = (P∗P)2 (6.4)

2P∗P = (G∗G)2 (6.5)

by Theorem 6.1.2 G and P are class (Q) , hence 6.4 and 6.5 leads to

2G∗G = (P∗P)2 = P∗2P2 (6.6)
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and

2P∗P = (G∗G)2 = G∗2G2 (6.7)

Since they are 2-Isometries , 6.6 and 6.7 leads to ;

2G∗G = (P∗P)2 = 2P∗P (6.8)

and

2P∗P = (G∗G)2 = 2G∗G (6.9)

From 6.8 and 6.9 we have that 2G∗G = 2P∗P implying G∗G = P∗P hence the proof.
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Chapter 7

Conclusions and Recommendations

7.1 Introduction

We infer conclusion and recommendations in this chapter basing on the captured specific

objectives for the study and also on the out-turns that we obtained in our study .

7.2 Conclusions

In conclusion, the results presented in this study highlight several important properties of skew

quasi-p-class (Q) operators. Firstly, it has been established that these operators are closed under

unitary and scalar multiplication, indicating their stability under these operations. Secondly,

a bounded operator qualifies as a skew quasi-p-class (Q) operator if it possesses both Quasi-

Isometry and Isometry properties. This suggests a strong connection between these operator

classes.

Furthermore, it has been observed that if a bounded operator is a skew quasi-p-class (Q)

operator, it also falls under the class (Q) operator category when it is unitary. This indicates a

relationship between the skew quasi-p-class (Q) operators and the class (Q) operators.

The research findings also reveal that a bounded operator, which meets the criteria of being

a skew quasi-p-class (Q) operator while also possessing properties of Quasi-Isometry and self-

adjointness, exhibits the characteristics of being isoloid and polaroid. This discovery highlights

the intrinsic connection between these particular properties and the skew quasi-p-class (Q)
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operator category.

Additionally, it has been demonstrated that if a bounded operator is a skew quasi-p-class

(Q) operator with Quasi-Isometry and self-adjoint properties, it possesses Bishop’s property.

This result further emphasizes the significance of these properties in the context of the skew

quasi-p-class (Q) operators.

Furthermore, the study shows that if two bounded operators are posimetrically equivalent and

self-adjoint, they are also 2-metrically equivalent. This result establishes a relationship between

posimetric equivalence, self-adjointness, and 2-metric equivalence.

It has also been established that if two operators are posimetrically equivalent, they are

metrically equivalent when they are idempotent, indicating a connection between posimetric

equivalence, idempotency, and metric equivalence.

The study also reveals that if two operators are mutually class (Q), their products are also

mutually class (Q) operators. This result demonstrates the preservation of the class (Q) property

under multiplication.

It has also been found that if two operators are almost class (Q) operators and mutually class

(Q), they are classified as class (Q) operators. This result highlights the relationship between

almost class (Q) operators and class (Q) operators.

Lastly, the study shows that if two operators are mutually class (Q) and 2-Isometries, they

are metrically equivalent. This finding emphasizes the connection between mutual class (Q),

2-Isometries, and metric equivalence.

The study also reveals the following significant findings:
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[1 ] . If two operators are mutually class (Q), they are 2,2-metrically equivalent provided

they are class (Q). This result indicates that the mutual class (Q) property guarantees a

stronger form of metric equivalence, specifically 2,2-metric equivalence.

[2 ] . The study demonstrates that if two operators are 2-Isometries and mutually class (Q),

they are metrically equivalent. This result establishes a connection between the properties

of 2-Isometries and mutual class (Q), indicating that they jointly lead to metric equivalence.

Overall, these results contribute to a deeper understanding of the properties of skew quasi-

p-class (Q) , posimetrically equivalent and mutually class (Q) operators and related operator

classes, shedding light on their fundamental characteristics and connections in operator theory.

7.3 Recommendations

Based on the newly established classes of operators, namely skew quasi-p-class (Q) operators,

posimetrically equivalent operators, and mutually class (Q) operators, these operator properties

can potentially be harnessed and applied in the telecommunications industry to alleviate

traffic congestion , we therefore highly recommend these classes to be incorporated in the

telecommunication industry. This is because by leveraging the closure property, these classes of

operators can ensure stability and robustness in the communication network. Additionally, the

properties of unitary and scalar multiplication can be utilized to optimize resource allocation

and enhance the efficiency of data transmission. Implementing these operator classes in the

telecommunications industry has the potential to significantly improve network performance,

mitigate congestion issues, and ultimately enhance the overall quality of service for end-users.
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We also recommend properties of Skew Quasi-p-class (Q) , Posimetrically equivalent and

Mutually class (Q) operators to be adopted in construction of codes in the telecommunication

industry to help ease traffic flow .

The analysis of class (Q) operators in the typical Hilbert space has not been spent . In this

study , we were able to expand class (Q) operators into the classes of skew quasi-p-class (Q) and

mutually class (Q) operators and study their correlation to other classes . It would be of sizeable

interest therefore for the following to be explored in the future :

[1 ]. What properties do class (Q) operators enjoy in the semi-Hilbertian space .

[2 ]. Is mutually class (Q)operators an equivalence relation ?

[3 ]. Is there a relation between Posimetrically equivalent operators and nearly equivalent

operators ?
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