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ABSTRACT

In this study, we develop a mathematical model of describing how the concentration
of oxygen is affected by temperature variations and the pollutant concentration in
a river. This is achieved by formulating a set of advection-diffusion reaction partial
differential equations governing concentration of pollutant and the concentration
of dissolved oxygen. We derive a pair of coupled advection diffusion equations
that describe the dynamics of river pollution using conservation of mass laws.
Analytical solutions are obtained using an asymptotic method. From the model,
both concentration of dissolved oxygen and pollutant are obtained without and with
the dispersion coefficient. Since temperature plays a crucial role in determining the
amount of oxygen which enters in the water, its effects on the dissolved oxygen is
studied. Simulation of the model is performed using Matlab. From the analysis of
the model, it is observed that, when a river is highly polluted, a slight change in
temperature leads to catastrophe and there is a temperature beyond which a river
becomes ecologically dead. From the numerical simulations, we observe that, when
there is high temperature, oxygen levels depletes rendering the river incapable of
supporting aquatic life. From the analysis, setting up adaptive strategies to address
extreme temperature fluctuations, their effects and reducing river pollution will
help in protecting aquatic life and improving water quality.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, we give background information to the study. In section 1.2, we

discuss the dynamics of dissolved oxygen, pollution and temperature. We give a

brief introduction to pollution in section 1.3, sources of pollution in section 1.4,

water quality parameters in section 1.5 and dissolved oxygen in section 1.6. In

section 1.7, we describe mathematical models and Advection-Reaction Diffusion

equations in section 1.8.

1.2 Background of the study

Living organisms depends on rivers and lakes for water. The amount of dissolved

oxygen in water depends on the temperature of the water and pollutant concentra-

tion. An increase in its temperature leads to decrease in dissolved oxygen levels.

Dissolved oxygen (DO) is one of the indicators of the biological health of a river

but exhibit fluctuations depending on the season and also time of the day. Pol-

lution of rivers has been an environmental disaster especially in the developing

countries. The problem arises especially because of human activities such as agri-

culture. These activities significantly contributes to the contamination of water

which affects living organisms because they use river waters daily. River pollution

is caused by substances that enter into water, see for instance (Metcalf et al., 1991).

Temperature and oxygen are two principal water quality factors which influence
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the ecosystem of the river. The changes in water temperature affects biological

and chemical processes. As the temperature of the water increases, it’s capacity

to hold dissolved oxygen decreases. This leads to lower levels of dissolved oxygen

in the water. High temperature influence the toxicity of pollutants by accelerating

chemical reactions which potentially transforms pollutants into a more toxic forms

or maybe generate harmful products (Metcalf et al., 1991).

Global warming has resulted in steady rise of temperature which has indeed

increased water temperatures. High water temperatures decreases oxygen solubility

in water. In addition, temperature influences spawning periods, growth rate and

mortality rate of a river aquatic inhabitants. An increase in temperature leads to

reduction of DO which endangers life of aquatic animals (Chapman, 1996).

With an increase in population and social development, there is a need to ad-

dress the issue of water quality and ensure water quality for biological sustainabil-

ity is maintained. Due to increasing concern about water quality, mathematical

models, which helps us understand how to control water pollution problem and

maintain water quality even without interfering with it have been developed. The

models are advantageous since they help in determining the extend in which a river

is polluted, see for instance in (Pimpunchat et al., 2009).

1.3 Pollution

In this section, we briefly look at pollution. Pollution is defined as the addition of

substances to water, air and land which negatively affect living organisms and also

has a negative effect to the environment. Pollution of air, water and land are the

three categories of pollution.

Pollution in rivers originates from various sources, each contributing different

types of contaminants. The primary sources includes industrial discharge where
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factories and industrial plants release pollutants such as heavy metals, chemicals

and toxic substances into rivers, Agricultural run off where fertilizers, pesticides

and animal waste from farms are washed into rivers, sewage and wastewater where

untreated or inadequately treated sewage and wastewater from residential, indus-

trial sources add pathogens, organic matter and other pollutants to rivers.

Mining activities where mining operations discharges sediments and toxic sub-

stances like mercury into nearby water bodies and plastic waste where improper

disposal of plastics break down into microplastics which end up in rivers and pose

threats to aquatic life. As there are no signs of water pollution being stopped

from the fact that water is being polluted day after day, there is a need to develop

mathematical models in order to predict levels of pollutant in rivers, lakes and

oceans.

Some of the effects of river pollution includes ecosystem damage where pollu-

tants harm or kill aquatic organisms, disrupting food chains and reducing biodiver-

sity, human health risks where contaminated water cause water-borne diseases and

issues for communities relying on rivers for drinking water, bathing and fishing.

Eutrophication in which excessive nutrients, primarily nitrogen and phospho-

rus, leads to algal blooms that depletes oxygen levels in water causing dead zones

and economic impacts in which pollution affects fishing, tourism and water sports

industries which leads to economic loses.

1.4 Sources of pollution

In this section, we briefly look at sources of pollution. Sources of pollution are

classified as point source or non-point sources, where point sources are contamina-

tions that occurs from a single source that can easily be located while non-point

source pollution is contamination derived from multiple or diffused sources where
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it is not easy to determine the exact origin of the pollution for instance floodwater

that takes all types of waste from the land into a river.

We look at some water quality parameters in section 1.5. We shall start with

temperature, followed by PH, dissolved oxygen, Biological Oxygen Demand and

Chemical Oxygen Demand.

1.5 Water Quality Parameters

The healthy of a river is dependent on the quality of its water, which may be affected

by presence of pollutants. Some parameters which express chemical, physical and

biological composition of water are used to assess the quality of a river, see for

instance (Chapman, 1996). Other parameters includes Temperature and PH.

Due to change in climate over the recent years, temperature has steadily in-

creased, which has negatively impacted the environment especially levels of dis-

solved oxygen in rivers, see for instance (Chapman, 1996). High temperatures has

increased rates of chemical reactions. Solubility of gases has however decreased

with the temperature (Henry’s law). Temperature determines the amount of oxy-

gen that dissolves in water, when temperature increases, less oxygen dissolves in

water. Warm water have low dissolved oxygen as compared to cold water. Due to

climatic changes, water temperature fluctuates over the period of 24 hours in some

water bodies, and also vary with the seasons, see for instance (Chapman, 1996).

Temperature governs the kind and type of aquatic life. Organisms have pre-

ferred temperature regimes that may change depending on the season. High tem-

peratures leads to death of aquatic organisms such as fish since increase in temper-

ature decreases dissolved oxygen levels in rivers.

Surface water temperatures range between 0◦ to 30◦ though varies depending on

the season with minimum temperature occurring during cold seasons and maximum
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temperature occurring during dry seasons, see for instance (Chapman, 1996).

The PH of the water is a very vital variable of water quality which influences

biological processes in water bodies and shows how acidic or basic water is, see for

instance (Chapman, 1996).

1.6 Dissolved Oxygen

Dissolved oxygen, (DO), levels are affected by water temperature, ionic strength,

dissolved solids, atmospheric pressure and other parameters, see for instance (Cen-

ter, 2024). Oxygen solubility decreases as these parameters increase, reducing the

amount of dissolved oxygen in water. Graphically, variation of dissolved oxygen

with temperature is as illustrated in Figure 1.1

Figure 1.1: Dissolved oxygen vs temperature

The presence of organic solids, such as dead plants materials and other organic

debris in rivers contribute to the consumption of dissolved oxygen, Microorganisms

decompose the solids, through a process which consumes oxygen. High levels of
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organic solids correlate with higher biological oxygen demand(BOD), indicating an

increased demand for dissolved oxygen. The graph of dissolved oxygen and solids

can therefore be as shown in Figure 1.2

Figure 1.2: Dissolved oxygen vs solids

As suspended solids increases, dissolved oxygen levels decreases due to increased

oxygen demand in decomposing organic matter, though the specific pattern de-

pends on factors like microbial activity, temperature of the water and type of

solids present.

The levels of dissolved oxygen in water is categorized into normoxia, hypoxia

and anoxia; where normoxia represent the normal oxygen levels in a water body

that support life functions for organisms in that water body without causing stress,

hypoxia refers to levels of oxygen in a water body lower than normal levels which

cause stress and harm aquatic organisms and anoxia refers to levels in a water body

where there is no oxygen or extremely low levels of oxygen.

Dissolved oxygen concentration which is below 4 mg/L may adversely affect the

survival of aquatic organisms. In addition, dissolved oxygen concentration below 2

mg/L may not support aquatic life and may even lead to death of aquatic organisms
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such as fish, see for instance (Chapman, 1996).

The reason to why we have chosen temperature to be our main parameter is

due to global warming which leads to a decrease in dissolved oxygen.

It is therefore important to be able to determine the ideal levels of oxygen in

water for aquatic life survival, to this end, a model is developed to help achieve

this objective.

Biological Oxygen Demand (BOD) refers to the amount of oxygen which is re-

quired by microorganisms for the purpose of breaking down organic materials. The

BOD determines oxygen that is consumed by microorganisms when decomposing

organic matter in a river. This water quality parameter deals with the amount of

oxygen consumed (mgO2L
−1) by organisms in order to oxidize organic compounds.

Unpolluted water have a BOD values of 2mgL−1 or less whereas water bodies

receiving wastewater may have a BOD of 10mgL−1, see for instance (Chapman,

1996).

Chemical oxygen demand refers to the amount of oxygen that is needed to

break down organic material via oxidation. Concentrations of the chemical oxy-

gen demand that is observed in surface waters ranges from 20mgL−1O2 or less

in unpolluted water to 200mgL−1O2 in waters receiving effluents, see for instance

(Chapman, 1996).

In section 1.7 we shall describe the use of mathematical models.

1.7 Mathematical models

Mathematical models exist to describe how a rise in pollutant concentration and

an increase in temperature affect the overall dissolved oxygen levels in a river.

These models often take into account various factors such as biological oxygen

demand(BOD), temperature-dependent oxygen solubility, nutrient loading and bi-

7



ological oxygen consumption rates.

One commonly used model is the Streeter-Phelps model, which describes the

dynamics of DO in a river over time. This model considers the input of pollutants,

their decay rates, and temperature dependence of oxygen solubility to predict dis-

solved oxygen concentrations along the length of a river (Pimpunchat et al., 2009).

Another approach is the use of mechanistic models based on mass balance equa-

tions, which incorporate the effects of temperature and pollutant concentrations

on oxygen dynamics in rivers. These models can vary in complexity, from simple

linear relationships to more complex differential equations(Chapra, 1996).

Overall, Mathematical models provide valuable tools for understanding and pre-

dicting how changes in pollutant concentration and temperature can impact dis-

solved oxygen levels in rivers, helping inform management and mitigation strategies

to protect aquatic ecosystems.

An increase in temperature typically leads to a decrease in the amount of dis-

solved oxygen in rivers. Warmer water holds less oxygen than cooler waters because

the solubility of oxygen decreases as temperature rises. This can have significant

impacts on aquatic ecosystems, as many organisms rely on dissolved oxygen for

survival. Decreased oxygen levels can stress or even suffocate aquatic life, leading

to negative consequences for the overall health of river ecosystems.

An increase in pollutant concentration in a river can negatively affect its dis-

solved oxygen levels through various mechanisms. Pollutants such as organic mat-

ter or nutrients for example nitrogen and phosphorous can lead to excessive algal

growth through eutrophication. When these algal die and decompose, bacteria

consume oxygen during the decomposition process, leading to a decrease in dis-

solved oxygen levels. Overall, a rise in pollutant concentration often exacerbates

the decline in dissolved oxygen levels, posing significant threats to river ecosystems.
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1.8 Advection-reaction diffusion equations

Reaction-diffusion equation is a partial differential equation that describes the

time evolution of the concentration of one or more chemical substances under-

going both diffusion and reaction process. The general form of one-dimensional

reaction-diffusion equation is of the form

ut = Duxx + F (u), (1.1)

where u is the concentration of the substance with respect to space and time t,

D is the diffusion coefficient, representing the rate at which the substance diffuses

through space, F (u) is the reaction term, describing the changes due to chemical

reactions.

Advection-reaction diffusion equations is an extension of the Reaction-diffusion

equations with advection term, such types of equations are used to model the

transport, diffusion and reaction of substances in medium where there is a flow or

advection of the substance along with the diffusion and chemical reaction process.

They are of the form;

ut + vux = Duxx + F (u), (1.2)

where v is the advection velocity representing the speed at which the substance is

transported by the flow.

Reaction -Advection-Diffusion models are effective for describing the distribu-

tion of dissolved oxygen in rivers, accounting for the effects of pollution and tem-

perature.
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1.9 Statement of the problem

Although mathematical models for determining oxygen concentration and pollu-

tant concentration in a river exist, see for instance Pimpunchat et al. (2009), for

equations governing the concentration of pollutant, the models considered pollu-

tant addition along the river. For the equation governing concentration of oxygen,

the models considered the rate of transfer of oxygen through the surface of the

water from the air but did not consider the effect of temperature on such transfer.

To the best of my knowledge, none of these studies has incorporated temper-

ature in the model. Temperature plays a big role in determining concentration

of dissolved oxygen in a river. The temperature of water is a critical factor as it

directly influences the amount of oxygen that enters into the water. Existing river

pollution models have overlooked its importance. Given the significant role played

by temperature in determining the concentration of dissolved oxygen, it is essential

to incorporate temperature in the existing river pollution models.

1.10 Objectives of the study

The main objective of the study is to develop and analyse a model of temperature-

dependent dissolved oxygen and pollutant concentration in a river.

1.10.1 Specific objectives

(i) Formulate a model of temperature-dependent dissolved oxygen and pollutant

concentration in a river;

(ii) Determine the steady states of oxygen and pollutant concentration from the

model formulated in (i);

(iii) Simulate the model to illustrate the results in (ii).
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1.11 Methods of the study

We shall use the following methods:

(i) Formulate a model using a system of advection-diffusion reaction partial dif-

ferential equations (PDE);

(ii) Analytically determine the steady state of the model in (i);

(iii) Use Matlab software to generate numerical simulations for the model.

1.12 Justification of the study

This study helps in predicting the level of pollutant and oxygen concentrations in a

river. It contributes to a timely and cost effective method in determining the levels

of pollution in a river. Furthermore, incorporating temperature in the models of

water pollution will help in identifying potential problems of the state of rivers and

on water bodies before they become more severe and facilitate the development of

effective strategies to address the water pollution and protect aquatic ecosystems.

11



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we discuss the literature on the use of partial differential equations.

The main idea is to review the literature on models for oxygen and pollutant

concentration and give their limiting gaps.

2.2 Oxygen and Pollutant Concentration Models

Oxygen concentration models refer to mathematical representations that describe

and predict the distribution of oxygen in a specific environment such as rivers.

These models are used to understand how oxygen levels change, interact with other

substances and how it responds to other factors. Pollutant concentration models

are models used to predict and assess the distribution of the levels of pollutants

in various environmental media such as rivers. They help in understanding and

managing environmental pollution (Pimpunchat et al., 2009).

Mathematical models, see for instance (Pimpunchat et al., 2009), have been

developed and help in predicting the levels of pollution in rivers. Streeter-Phelp’s

model, see for instance (Streeter, 1925), originated in 1920’s and described the

balance of dissolved oxygen in rivers. The model was based on the assumptions

that a single biological oxygen demand input is distributed evenly at a cross section
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of the river. They used partial differential equations to estimate the total oxygen

deficit in a river. It reads as:

∂D

∂t
= n1Lb − n2D, (2.1)

where D := D(x, t) is the saturation deficit, given by dissolved oxygen concen-

tration at saturation minus the actual dissolved oxygen concentration, n1 is the

deoxygenation rate, n2 is the reaeration rate and Lb is the oxygen demand at time

t. They solved Equation (2.1) analytically and represented it in the form of dis-

solved oxygen sag curve. This model is very useful since it describes how dissolved

oxygen decreases in a river due to degradation of biological oxygen demand. The

Streeter-Phelps model provide a foundation to understanding how oxygen levels

change in rivers over time.

Amin (2014) considered the scalar model

∂C

∂t
= α

∂2C

∂x2
− v

∂C

∂x
− kC, x > 0, t > 0

u(0, t) = β, t > 0

u(x, 0) = 0, x > 0

u(x, t) → 0, as x → ∞ (2.2)

where C := C(x, t) is the concentration of a substance at distance x downstream,

α is the diffusion coefficient, v > 0 is the velocity of the water in a river, β > 0 is

the rate of discharge, kC is source and v ∂C
∂x

represent convection of the substance.

It is assumed that the concentration of a substance is being poured at a constant

rate into a straight, narrow river which flows with constant velocity. They used the

Laplace transform method in determining the analytical solutions of the equation.

They investigated when the river is flowing with low velocity and when the river is

flowing with high velocity, where they found that at a very low velocity, the con-
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centration of the substance reach zero at a shorter distance and with the increasing

velocity of the river flow, the concentration distribute at a further distance which

also depends on the increasing of the coefficient α. In Amin (2014), the effect of

temperature has not been considered.

Jain et al. (2021) considered the scalar model

∂(AC)

∂t
= β

∂2(AC)

∂x2
− ∂(vAC)

∂x
+ σ(S − C)− z; 0 ≤ x < L, t > 0 (2.3)

where L (m) is the length of the polluted part of the river, A := A(x, t) refers

to the cross-sectional area of the river (m2), β refers to the diffusion coefficient

of dissolved oxygen along the river (m2day−1), v represent velocity of the water

along the river, σ represent the rate of transfer of oxygen from the air into water, S

represent the saturated oxygen concentration (kgm−3) and z represent net oxygen

decay rate in the presence of biological pollutants (kgm−1day−1). Other symbols

are as defined in Equation (2.2). Since the advection term is much smaller as

compared to diffusion term, the term ∂(vAC)
∂x

along the river, is neglected. Thus,

Equation (2.3) becomes:

∂(AC)

∂t
= β

∂2(AC)

∂x2
− σ(S − C)− z; 0 ≤ x < L, t > 0. (2.4)

The term σ(S − C) represent oxygen deficit. The method of lines was employed

to solve Equation (2.4) subject to Dirichlet boundary condition. They investigated

the effect of the pollutant on the concentration of DO where it was found that if

the stream is unpolluted originally, the dissolved oxygen level remains near satura-

tion, but in the presence of pollutant, oxygen level drops and the natural aeration

through atmosphere becomes active which helps oxygen to regain its normal value.

In model, Jain et al. (2021), the influence of temperature has not been consid-

ered on the rate of oxygen transfer from the air into the river, σ in σ(S − C) and

14



temperature plays a crucial role in determining the rate of oxygen transfer into the

water. If temperature is considered, a more comprehensive model of river pollution

can be developed.

Hussain et al. (2012) considered the model

∂(AP )

∂t
= Dk

∂2(AP )

∂x2
− ∂(vAP )

∂x
+ zP, (2.5)

∂(AX)

∂t
= Dy

∂2(AX)

∂x2
− ∂(vAX)

∂x
+ α(S −X), (2.6)

where P := P (x, t) is the pollutant concentration (kg m−3), X := X(x, t) is the

dissolved oxygen concentration (kg m−3), Dy represent dispersion coefficient of

dissolved oxygen along the river (m2day−1), Dk represent dispersion coefficient of

pollutant along the river (m2day−1), A represents cross-sectional area of the river

(m2), α represent rate of transfer of oxygen from air to water (m2day−1), z represent

mass transfer of solids (solutes). Other symbols are as defined in Equation (2.2).

Equation (2.5) represent pollutant concentration and includes the mass transfer

of solids (solute) to the river while Equation (2.6) is a mass balance for dissolved

oxygen. It is assumed that the river has a uniform cross-sectional area and is one

dimensional.

They used separation of variables method to determine the steady state, where,

the steady state solution for Equations (2.5) using the boundary conditions P (0) =

q
kA

, and Dk = 0 was found to be P (x) = q
kA

e
z
vA

x and the steady state solution for

Equation (2.6) subject to boundary condition X(0) = S+ q
kA

and Dy = 0 was found

to beX(x) = q
kA

e−
α
vA

x+S, whereX(x) is the dissolved oxygen concentration down-

stream of the river. It was found that pollutant concentration and dissolved oxygen

concentration level remain within the critical values of the parameters and approx-

imately consistent with the values measured for different stations. This model

provide a foundation for understanding the dynamics of pollutant and dissolved
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oxygen concentrations.

The effect of temperature on the rate of oxygen transfer from the air into water

is not considered.

Manitcharoen and Pimpunchat (2020) considered the model,

∂(AP1)

∂t
= Dp

∂2(AP1)

∂x2
− ∂(vAP1)

∂x
−K1AP1 + qH(x), (2.7)

∂(AP2)

∂t
= Dx

∂2(AP2)

∂x2
− ∂(vAP2)

∂x
−K1AP2 + q(1− e(−λx))H(x),

(2.8)

where, H(x) is the Heaviside function given by

H(x) =

{
1, if 0 < x ≤ L

0, if otherwise.

The distance down stream from its source is described by x, P1 := P1(x, t) and

P2 := P2(x, t) represent concentration of pollutant which is assumed to be varying

with time t(days). Sources of pollution were considered in two cases, P1 increasing

uniformly and P2 increasing exponentially as demonstrated in Equations (2.7) and

(2.8) respectively. The constant λ represent exponential pollution constant term,

q is the constant rate of pollutant addition into the river and v is the velocity of

the river in (m day−1).

They used the Laplace transform method to obtain analytical solutions for

Equations(2.7) and (2.8) and then applied finite difference technique to obtain

numerical solutions. The steady-state solution of Equations (2.7) and (2.8) were

obtained as:

P1(x) =
q

AK1

+ (P0 −
q

AK1

)e
(−(γ− β√

DP
)x)
, (2.9)

P2(x) =
q

AK1

− q

AK3

e−λx + (P0 −
q

AK1

+
q

AK3

)e
(−(γ− β√

Dp
)x)
,
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(2.10)

where, γ = v
2Dp

, β =
√

v2

4Dp
+K1, K3 = K1 − vλ −Dpλ

2 and P0 represent source

concentration at the origin. Upon introducing limits as x → ∞ yields P1(x) =

P2(x) = q
AK1

. It can be seen that, the trend of concentrations along the river

varies with time and space and is affected by the rate of pollutant addition. The

concentration of the pollutant vary with q along the river. This model is useful

since it helps us understand how pollutant disperse in a river over a time.

Pimpunchat et al. (2009) considered

∂(AP )

∂t
= Dp

∂2(AP )

∂x2
− ∂(vAP )

∂x
−K1

X

X + k
AP + qH(x), (2.11)

∂(AX)

∂t
= Dx

∂2(AX)

∂x2
− ∂(vAX)

∂x
−K2

X

X + k
AP + σ(S −X), (2.12)

where, 0 < x < L < ∞, t > 0. The rate at which pollutant is added in to the

river is represented by q, the parameter k represents half saturated oxygen demand

concentration for pollutant decay (kgm−3), Dp represents dispersion coefficient of

pollutant in the x direction (m2day−1), K1 represents degradation rate coefficient

for pollutant (day−1), K2 is the rate at which oxygen is being consumed by the pol-

lutant (day−1), Dx represent dispersion coefficient of dissolved oxygen (m2day−1),

other symbols are as defined in Equation (2.2) and Equation (2.8). It was assumed

that the pollutants are largely biological wastes and undergo various biochemical

and biodegradation process using oxygen.

They considered the variation to be only in the downstream of the river where

they used variation-of-parameters method and applied the boundary conditions
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P (0) = 0, X(0) = 0 to determine the steady state solutions, where they found

pollutant concentration downstream is P (x) = q
K1A

(1− e
−K1x

v ) which upon taking

limits as x → ∞ yields P (x) = q
K1A

and for upstream where there is no dispersion

since there is no pollution upstream, it was found that, the dissolved oxygen re-

quirement for survival of aquatic animals such as fish is 30% of the saturated values

S and therefore, q is required to be such that, q < 0.7σK1S
K2

. They also investigated

for k ̸= 0, where they concluded that the steady state solution depends on param-

eters k and q downstream such that if q ≥ σK1S
K2

, downstream solution does not

exist. In this model, the effect of temperature on the rate of oxygen transfer from

the air into the water has not been considered.

Although mathematical models for determining oxygen concentration and pol-

lutant concentration in a river exist, see for instance Pimpunchat et al. (2009) and

Manitcharoen and Pimpunchat (2020), for the equations governing the concentra-

tion of pollutant, the models considered pollutant addition along the river. For

the equation governing concentration of oxygen, the models considered the rate of

transfer of oxygen through the surface of the water from the air but did not consider

the effect of temperature on such transfer. None of these studies has incorporated

temperature in the model.

Dissolved oxygen and temperature have an inverse relationship, see for instance

(Rajwa-Kuligiewicz et al., 2015) which can be described using the term e−λθ since

it captures the gradual changes over time and the asymptotic behavior of dissolved

oxygen as temperature, θ, increases, where λ > 0, determines the strength of the

effect of temperature θ.

Therefore, the formulation of the model in this research is similar to that pro-

posed by Pimpunchat et al. (2009) but with the inclusion of temperature. This is

what we do in the next Chapter.
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CHAPTER 3

FORMULATION OF THE MODEL

3.1 Introduction

In this chapter, we develop a model that describes the dynamics of the concentra-

tion of pollutant and oxygen in a river using systems of advection-diffusion reaction

partial differential equations. We start by stating the underlying assumptions in

section 3.2 and then derive the model with the inclusion of temperature variation.

3.2 Assumptions of the model

We make the following plausible assumptions:

(i) The river is divided into sections where each section flows with uniform ve-

locity v;

(ii) The flow is considered to be in one dimensional with a uniform cross-sectional

area in each section;

(iii) The concentration of oxygen in the river depend on temperature gradient of

the water;

(iv) The concentration of pollutant is primarily influenced by factors other than

temperature, such as the rate of pollutant input into the river.
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Let the concentration of pollutant at (x, t) be denoted by P := P (x, t) and that

of oxygen be denoted byX := X(x, t). Let R define a region in space through which

the water flows, known as control volume which extends from the water surface to

the bottom, A to be the cross-sectional area and n⃗ to represent the outward unit

normal vector to the control volume’s boundary as illustrated in Figure 3.1.

Figure 3.1: Schematic Diagram of a river cross section

By conservation of mass principle,

Net change of pollutant inside R = The net flux across the boundaries

+net pollutant generated;

= Net flux across the boundaries+Net

pollutant added+ Advection

+Removal (3.1)

Total concentration of pollutant =

∫
R

P (s, t)ds, (3.2)
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where R = [x, x+∆x].

Rate of net change of pollutant inside R = d
dt

∫
R
P (s, t)ds. Next, we show how the

flux of pollution is obtained.

Let the flux of pollution, P (x, t) in the river at a point (x, t) be represented by

Jp := Jp(x, t). The total flux Jp is a combination of convection and diffusion, and

is given by

Jp = Jpc+ Jpd = vP −Dp∇P, (3.3)

where the convection component Jpc represent the transport of a pollutant due to

fluid’s bulk motion (how the river flows) and is given by the expression Jpc = vP .

The diffusion component is represented by Jpd = −Dp∇P where Dp is the disper-

sion coefficient and ∇P is the gradient of pollution concentration. The negative

sign means that, the flux is from the side of higher concentration to that of lower

concentration.

The Pollutant and Oxygen interact with each other, such that both the con-

centration of pollutant and dissolved oxygen change with time in response to each

other’s presence such that

F1(X,P ) := −K1
X

X + k
P, (3.4)

where K1 is the pollutant degradation rate coefficient which indicates how fast

pollutants are broken down in the presence of dissolved oxygen and k denotes

the half saturation oxygen demand concentration for pollutant decay. Equation

(3.4) represents how concentration of pollutants changes with time in response to

the presence of dissolved oxygen, and as the concentration of oxygen increases,

the concentration of pollutants decreases. Similarly, the concentration of oxygen

decreases, as pollutant concentration increases. Since pollutants use up oxygen
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during decomposition, we represent this by

F2(X,P ) := −K2
X

X + k
P . (3.5)

Equation (3.5) describes how the concentration of dissolved oxygen decreases in

response to increase in pollutants. K2 is the de-aeration rate coefficient for dis-

solved oxygen which indicates how fast dissolved oxygen depletes in the presence

of pollutants.

Equation (3.4) takes the indicated form to show the change in oxygen consump-

tion is not constant but varies depending on the levels of available oxygen and the

half saturation constant and to reflect the system’s sensitivity to changes in both

oxygen and pollutant concentration.

We consider a water body with cross-sectional area A, depth h and volume V ;

that is, V = Ah. We then assume that the reactions in the water body is influenced

by several factors including pollutant addition, thus the reaction in the water body

is

d(PV )

dt
= −K1

X

X + k
(PV ) +Q (3.6)

where Q = qAh. Thus, the expression becomes

d(PAh)

dt
= −K1

X

X + k
(PAh) + qAh (3.7)

Dividing Equation (3.6) by Ah, we obtain

dP

dt
= −K1

X

X + k
P + q. (3.8)
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By applying the mass conservation principle, we have:

Net change of pollutant inside R = − what is disappearing over the boundary of

R per unit time +what is produced in R per unit time,

d

dt

∫
R

PdV = −
∫
∂R

Jp · ndσ +

∫
R

rdV.

Here dσ is an element of area on the control surface ∂R, dV is the element of volume

within the control volume R, n⃗ is the outward unit normal vector to the control

volume’s boundary, r := r(x, t) is the source term which includes both interaction

term and the pollutant input.

Thus, from Equations (3.2), (3.3) and (3.8) and by the general mass conservation

law, we have

d

dt

∫
R

P (s, t)ds+

∫
∂R

Jp · ndσ =

∫
R

(−K1
X

X + k
P + q)dx, (3.9)

Applying Leibniz rule and the Divergence theorem, we obtain

∫
R

(
∂P

∂t
+∇ · (vP −Dp∇P ))dx =

∫
R

(−K1
X

X + k
P + q)dx (3.10)

Since Equation (3.10) holds for any control region R and by the homogeneity of X,

P and continuity, we have

∂P

∂t
−Dp∇2P +∇ · vP = −K1

X

X + k
P + q, 0 < x < L, t > 0 (3.11)

Re-arranging, we have

∂P

∂t
= Dp∇2P −∇ · vP−K1

X

X + k
P + q, (3.12)
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for 0 < x < L, t > 0. We see from Equation (3.12) that,

∂P

∂t
= Dp

∂2P

∂x2
− ∂(vP )

∂x
−K1

X

X + k
P + q, (3.13)

for 0 < x < L, t > 0.

In an analogous manner, if we let X := X(x, t) denote oxygen concentration at

x at time t, and apply the conservation of mass principle, then we have:

Net change of DO concentration inside R is = the net flux across the boundaries

+ net oxygen generated.

Net change of DO inside R = Net flux across the boundaries

+Net oxygen added+ Advection

+Removal

Total concentration of oxygen in R =
∫
R
X(s, t)ds.

Net change of oxygen inside R = d
dt

∫
R
X(s, t)ds.

The derivation of the equation for oxygen concentration is similar to that of

pollutant concentration apart from the last term for rate of oxygen transfer from

air into the water. This is because if the water in the river is in contact with open

air, oxygen enters the water through the water surface and it is assumed that the

rate of increase in concentration of oxygen by movement from the surrounding air

into the river is proportional to the saturated concentration S less the concentration

X.

Let the rate at which oxygen is transfered into water from the air through the

water surface, per unit area and time be given by β. Thus, the mass of oxygen that

is transfered through the water surface per unit area and per unit time from the

air is given by β(S −X), where S is the saturation value for oxygen concentration

in water and X is the dissolved oxygen concentration in the water. The term
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β(S − X) is the flux term for the transport of oxygen through the open-water

surface which shows how much oxygen is transferred from the air into the water

per unit area and time. If we consider a water body with cross-sectional area A,

then, for 0 < x < L, t > 0, we have:

∂(AX)

∂t
= Dx

∂2(AX)

∂x2
− ∂(vAX)

∂x
−K2

X

X + k
AP + Aβ(S −X) (3.14)

Thus, from Equation (3.13) and (3.14), for 0 < x < L, t > 0, we obtain

∂P

∂t
= Dp

∂2P

∂x2
− ∂(vP )

∂x
−K1

X

X + k
P + q, (3.15)

∂X

∂t
= Dx

∂2X

∂x2
− ∂(vX)

∂x
−K2

X

X + k
P + β(S −X). (3.16)

Since pollutants are only discharged for x > 0, we include the Heaviside function

H(x) in Equation (3.15) which captures the fact that pollutants are only discharged

for x > 0.

Thus, Equation (3.15) becomes

∂P

∂t
= Dp

∂2P

∂x2
− ∂(vP )

∂x
−K1

X

X + k
P + qH(x), (3.17)

where, 0 < x < L, t > 0 and

H(x) =

{
1, if 0 < x ≤ L,

0, if otherwise.

In Equation (3.17), the influence of temperature has not been taken into ac-

count, since it is assumed that the concentration of pollutant is primarily influ-

enced by factors other than temperature, such as the rate of pollutant input into

the river. This is because the pollutant may be a run off from agricultural fields,

where temperature is not the driving factor of the concentration of the pollutant.
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We incorporate the effect of temperature in Equation (3.16) because it has a

direct impact on dissolved oxygen.

Increase in temperature increases rate of respiration which leads to increased

oxygen consumption. Dissolved oxygen concentration vary by season, depth and

time of the day. Cold weather seasons are characterized by low temperatures while

in hot seasons are characterized by high temperature. A narrow, deep, well shaded

river reduces the impact of warming by the sun hence holding more dissolved

oxygen while wide and shallow river would have high temperatures due to solar

heating which lowers the amount of dissolved oxygen. Warmer air temperature

affects water-temperature in a river.

If we consider the influence of temperature on the rate of oxygen transfer from

the surrounding air into the water, Equation (3.16) becomes,

∂X

∂t
= Dx

∂2X

∂x2
− ∂(vX)

∂x
−K2

X

X + k
P + β(S −X)e−λθ, (3.18)

where 0 < x < L, t > 0 and e−λθ indicate how the rate of oxygen transfer changes

as temperature changes. The term e−λθ is used because it captures the gradual

changes over time and the asymptotic behavior of dissolved oxygen as temperature,

θ, increases. The rate of oxygen transfer from the air to water decreases with the

increase in water-temperature and vice-versa and dissolved oxygen and temperature

have an inverse relationship, see for instance (Rajwa-Kuligiewicz et al., 2015). The

term β(S−X)e−λθ takes the indicated form since the rate of oxygen transfer from

the air into the water depends on the gradient of its concentration.

Therefore, the two coupled advection-dispersion reaction equations, which ac-

counts for the evolution of pollutant and dissolved oxygen concentrations are thus

obtained from Equation (3.17) and Equation (3.18) and are represented as shown

in Equation (3.19).
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∂P

∂t
= Dp

∂2P

∂x2
− ∂(vP )

∂x
−K1

X

X + k
P + qH(x), (3.19)

∂X

∂t
= Dx

∂2X

∂x2
− ∂(vX)

∂x
−K2

X

X + k
P + β(S −X)e−λθ,

0 < x < L, t > 0.

For easy of analysis of Equation (3.19), we do non-dimensionalization, to reduce

the number of parameters and group them in a meaningful way. For this purpose,

we define

t̄ :=
v

L
t, x̄ :=

x

L
, X̄ := X, P̄ :=

P

S
, k̄ :=

k

S
(3.20)

and assume that the length per unit time is equal to one, since it can be expressed

per day, that is L
v
= 1. We drop the bars for notational brevity and thus obtain;

∂P

∂t
= ϵp

∂2P

∂x2
− ∂P

∂x
−K1

X

X + k
P + γp,

(3.21)

∂X

∂t
= ϵx

∂2X

∂x2
− ∂X

∂x
−K2

X

X + k
P + αx(1−X)e−λθ,

for 0 < x < 1, t > 0

where, ϵp :=
Dp

L2 , ϵx := Dx

L2 , γp :=
q
S
, αx := β

system (3.21) is now the simplified form for the model of our interest that we shall

analyse in Chapter 4.
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CHAPTER 4

ANALYSIS AND RESULTS

4.1 Introduction

In this chapter, we wish to show that when a river is highly polluted, a slight change

in temperature leads to a catastrophe or hypoxia. For this purpose, we shall need to

determine the long-term solutions and analyse their respective stability/instability.

In section 4.2 we analyse the steady-state solution for zero dispersion, while in

section 4.3 we shall show the relationship between a critical temperature and pollu-

tant concentration and in section 4.4 we provide an analytic steady-state solutions

for the model including dispersion.

We determine the long-term solution; that is, the steady-state solution and

show that this solution is asymptotically stable. We will show how the long-term

solution is related to temperature.

4.2 Long-term Solution without Dispersion

Long-term solution are contained in the steady-state which are attained when

∂(P )
∂t

= ∂(X)
∂t

= 0. With the assumption that the speed of the water is very high and

dispersion coefficient are very small compared to speed of the water, we ignore the

dispersion coefficient; that is, Dp = 0 and Dx = 0, and the system of partial dif-

ferential Equations (3.21) then become a system of ordinary differential equations
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given in Equations (4.1) and (4.2).

dP

dx
+K1

X

X + k
P − γp = 0, (4.1)

dX

dx
+K2

X

X + k
P − αx(1−X)e−λθ = 0. (4.2)

Upon re-arranging, we obtain;

dP

dx
= −K1

X

X + k
P + γp, (4.3)

dX

dx
= −K2

X

X + k
P + αx(1−X)e−λθ.

To find the asymptotic solutions of Equations (4.3), we shall state the following

elementary and useful lemma.

Lemma 4.2.1. Let x ∈ (0,∞) and f : [x,∞) → R be a differentiable function. If

the limx→∞ f(x) exists and the derivative of the function f(x), ḟ(x) is uniformly

continuous on (x,∞), then limx→∞ ḟ(x) = 0

This lemma will be useful throughout our analysis and is motivated by the fact

that the variables in the model are continuous and differentiable and the solution

is bounded. Its proof can be found in Coppel (1965) and Gopalsamy (1992).

We wish to obtain the asymptotic solutions of the Equations (4.3). We look at

the eventual solution; that is, when x → ∞, by Lemma 1, since (P,X) is bounded

as x → ∞, we have,

0 = −K1
X

X + k
P + γp, (4.4)

0 = −K2
X

X + k
P + αx(1−X)e−λθ. (4.5)
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From Equation (4.4),

X

X + k
P =

γp
K1

, (4.6)

substituting in Equation (4.5), we obtain:

γp
K1

=
αx

K2

(1−X)e−λθ, (4.7)

which yields

X⋆ := 1− γp
K1

K2

αx

eλθ. (4.8)

Using Equation (4.8) in Equation (4.6), we get

P ⋆ :=
γp
K1

(X⋆ + k

X⋆

)
, (4.9)

Thus, the solution when x → ∞ is

(P ⋆, X⋆) =
( γp
K1

(X⋆ + k

X⋆

)
, 1− γp

K1

K2

αx

eλθ
)
. (4.10)

The solution of Equations (4.3) as x → ∞, (P ⋆, X⋆) is independent of x.

Proposition 4.2.1. If αx > γpK2eλθ

K1
, then (P ⋆, X⋆) is asymptotically stable.

Proof. The Jacobian matrix from Equation (4.3) is:

J(P,X) :=

(
−K1

X
X+k

−K1
Pk

(X+k)2

−K2
X

X+k
−K2

Pk
(X+k)2

− αxe
−λθ

)
(4.11)

which at (P ⋆, X⋆), yields:
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J(P ⋆, X⋆) =

(
−K1σ1 −K1σ2

−K2σ1 −K2σ2 − αxe
−λθ

)
, (4.12)

where, σ1 :=
(

αxK1−γpK2eλθ

αxK1−γpK2eλθ+αxkK1

)
, σ2 :=

(
kαx

2K1γp
(αxK1−γpK2eλθ)(αxK1−γpK2eλθ+αxkK1)

)
.

The matrix in Equation (4.12) can be written as;

J(P ⋆, X⋆) :=

(
m1 m2

m3 m4

)
, (4.13)

where m1 = −K1σ1, m2 = −K1σ2, m3 = −K2σ1, and m4 = −K2σ2 − αxe
−λθ.

The eigenvalues of J(P ⋆, X⋆) are given by;

µ1 :=
(m1 +m4) +

√
(m1 +m4)2 − 4(m1m4 −m2m3)

2
, (4.14)

µ2 :=
(m1 +m4)−

√
(m1 +m4)2 − 4(m1m4 −m2m3)

2
. (4.15)

For stability, the real part of the eigenvalues should be negative; that is, −K1σ1 −

K2σ2 − αxe
−λθ < 0 hence for asymptotically stability, we have; αx > γpK2eλθ

K1
.

If αx > γpK2eλθ

K1
, it implies that the river maintains a sustainable DO concentra-

tion which provides a more favorable habitat for aquatic life.

In section 4.3, we show how a critical temperature is obtained and how it relates

with pollutant concentration. For simplicity, we use γp and αx such that, γp :=
q
S
,

αx := β, as defined in Equation (3.21).
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4.3 Relationship between critical temperature

and pollutant concentration

In this section, we wish to show that there exist critical temperature, θc, beyond

which oxygen concentration will approach zero; that is, X(x) = 0 as x → ∞. Let

X⋆ be the positive deviation of concentration from the hypoxia level, which for

simplicity we shall take it as 0. Critical temperature is defined as the temperature

beyond which oxygen levels in a river tend to zero. We show that there is a

temperature, θc for which we shall have a catastrophe, obtained as follows;

X⋆ := 1− K2q

βSK1

eλθ. (4.16)

Oxygen concentration approaches zero at a temperature θc, thus we have;

X⋆ = 0 = 1− K2q

βSK1

eλθc , (4.17)

βSK1

K2q
= eλθc . (4.18)

Which upon simplification yields

θc :=
1

λ
ln
(K1βS

qK2

)
, (4.19)

where, θc is the critical temperature. Since θc > 0,
(

K1Sβ
qK2

)
> 1.

If θ ≥ θc, then oxygen levels becomes too low making the river incapable of sup-

porting aquatic life.

We wish to show the relationship between θc and the rate of pollutant addition,
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θc and the degradation rate coefficient for pollutant. When the rate of pollutant

addition is high, a slight change in critical temperature have a catastrophic effects,

leading to oxygen depletion rendering the river ecologically dead. The relationship

between critical temperature, θc, and rate of pollutant addition, q, can graphically

be as shown in Figure 4.1

Figure 4.1: Critical temperature, θc vs Rate of pollutant addition, q

When the rate of pollutant addition, q is high, as illustrated in Figure 4.1,

less θc is required for the river to be ecologically dead. High influx of pollutants

puts pressure on the river’s ecosystem which implies even at relatively lower θc,

the river’s oxygen levels tend to zero due to the excessive demand for oxygen

caused by the degradation rate of the pollutants making the river ecologically dead.

Conversely, when the rate of pollutant addition, q, is low, a higher θc is required

for the river to reach anoxic conditions. Therefore, Figure 4.1 illustrates that as

the rate of pollutant addition increases, less critical temperature is required for the

river to become ecologically dead.
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Oxygen levels depletes fast when rate of pollutant degradation is high and the

temperature is high. Therefore, when the concentration rate of the pollutant is

high and the critical temperature is very high, then the levels of oxygen in a river

depletes fast which makes the river logically not sustainable. The relationship

between critical temperature, θ and rate of pollutant degradation, K1 is as shown

in Figure 4.2.

Figure 4.2: Critical temperature, θ vs Pollutant degradation rate, K1

Figure 4.2 illustrates that, the rate of pollutant degradation increases as θc

increases making the river to be in hypoxia levels. This is because, degradation of

pollutants tends to increase with higher temperature. Therefore, a higher critical

temperature is required, for the river to be ecologically dead. This is because a

higher temperature accelerates biological activities and chemical processes, leading

to a faster degradation rate of pollutants and as the degradation rate increases due

to high temperature, the demand for oxygen also increases which leads to oxygen
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being depleted at a faster pace.

If K1

K2
<< 1, it indicates that the pollutant in a river is broken down or degraded

at a slower rate as compared to the speed at which oxygen is being removed due to

de-aeration process leading to a slower reduction in its concentration and oxygen

essential for aquatic life is being depleted at a faster rate.

If β
q
<< 1, means that the river is receiving pollutants at a higher rate as

compared to how the river is receiving oxygen from the air. This leads to insufficient

oxygen levels in the river which adversely affects the ecosystem.

Next, we wish to show that there exist a temperature, θ, where θ is the tem-

perature of the water in the river, that is favorable for supporting aquatic life; that

is, there exist a non zero concentration of oxygen in the river. This occurs when

X⋆ > 0. Using Equation (4.16), we see that

If

β >
qK2e

λθ

SK1

,

then

lnβ > ln(
qK2

SK1

) + λθ, (4.20)

lnβ − ln(
qK2

SK1

) > λθ. (4.21)

Therefore from Equation (4.21),

θ <
1

λ
ln
(SK1β

qK2

)
. (4.22)

Since θ < 1
λ
ln
(

SK1β
qK2

)
:= θc, the river environment remains conducive to supporting
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aquatic life. Clearly q > 0 and
(

SK1β
qK2

)
> 1.

We wish to show that if the rate of pollutant addition, is high, we shall re-

quire a smaller temperature change to lead to a catastrophe. This is contained in

Proposition 2.

Proposition 4.3.1. The function θ(q) is strictly decreasing with respect to q.

Proof.

θc =
1

λ
ln
(SK1β

qK2

)
(4.23)

θc =
1

λ

[
ln
(SK1β

K2

)
− lnq

]
(4.24)

θc =
1

λ

[
ln
(SK1β

K2

)
+ ln(

1

q
)
]

(4.25)

∂θc
∂q

= − 1

λq
< 0. (4.26)

The strictly decreasing relationship is significant in water quality management,

as it provides insights into how pollutant addition affects the thermal dynamics of

a river ecosystems.

Next, we wish to show that when the temperature of the water is equal to zero,

then there is a certain amount of pollutant if added into the river will lead to a

catastrophe. This is contained in Proposition 3.

Proposition 4.3.2. If θ = 0 and
(

SK1β
K2

)
≥ q > 1, then the river becomes ecologi-

cally dead when
(

SK1β
K2

)
= q.

Proof. Let X⋆ be the positive deviation of concentration from the hypoxia level,

which for simplicity we shall take it as 0.

X⋆ = 1− qK2

βSK1

, (4.27)
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In this case, we have

0 = 1− qK2

βSK1

, (4.28)

1 =
qK2

βSK1

, (4.29)

hence,

βSK1

K2

= q. (4.30)

When βSK1

K2
= q, it signifies a point where adding this specific amount of pol-

lutant into the river leads to catastrophic consequences. This critical condition

serves as a warning, indicating that surpassing a certain threshold could results in

severe ecosystem damage. Lets now observe how the stability is affected by q and

θ. For this purpose, we begin by considering θ and q being very small. There-

fore if, θ and q are very small, SβK1 > K2qe
λθ, which means (m1 +m4) < 0 and

(m1m4 −m2m3) > 0. Thus, the fixed point (P ⋆, X⋆) remains stable.

If θ and q are very big, K2qe
λθ becomes large. This means that β < qK2eλθ

SK1

due to high temperature and high pollutant input into the river. This affects

the dissolved oxygen concentration and overall health of the habitat suitable for

aquatic organisms, rendering the river incapable of supporting aquatic life. If

(1 + k) > K2q
SβK1

eλθ this makes the system to have a saddle point. Thus, changes in

θ and q, affect the stability and the overall behavior of the system.

We graphically show how θ and q affect the concentration of oxygen. This is as

shown in Figure 4.3. Figure 4.3 shows the solution dynamics of the model when

temperature is very small.
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Figure 4.3: Oxygen and Pollutant concentration for small θ

From Figure 4.3, we observe that oxygen concentration is decreasing but pollu-

tant concentration increases downstream.

If θ is big, oxygen concentration depletes resulting in ecologically dead river.

This makes the river incapable of supporting aquatic life. Numerically, the results

are as shown in Figure 4.4.
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Figure 4.4: Oxygen and Pollutant concentration as θ varies

From Figure 4.4, we observe that when θ is large, the concentration of oxygen

depletes very fast.

For small values of q and θ, there will be adequate oxygen concentration as

illustrated in Figure 4.5.
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Figure 4.5: Oxygen and Pollutant concentration when θ and q are small

From Figure 4.5, we observe that the concentration of oxygen reaches equilib-

rium point faster. The concentration of pollutant reaches its equilibrium faster

when the rate of pollutant addition is low.

4.4 Analytic steady-state solution for the model

including dispersion

At steady state when the dispersion coefficient are included, that is Dp ̸= 0 and

Dx ̸= 0, the system of partial differential equation in Equation (3.21) become a

system of second order ordinary differential equations, since that involve x as the

only independent variable. This results into Equations (4.31) and (4.32).
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ϵp
d2P

dx2
− dP

dx
−K1

X

X + k
P + γp = 0; x > 0, t > 0 (4.31)

ϵx
d2X

dx2
− dX

dx
−K2

X

X + k
P + αx(1−X)e−λθ = 0 (4.32)

Equation (4.31) and (4.32) becomes,

d2P

dx2
=

1

ϵp

dP

dx
+

K1

ϵp

X

X + k
P − γp

ϵp
, (4.33)

d2X

dx2
=

1

ϵx

dX

dx
+

K2

ϵx

X

X + k
P − αx

ϵx
(1−X)e−λθ. (4.34)

Since Equation (4.31) and (4.32) are second order ODES, we can transform them

to first order ODES, to obtain,

dP1

dx
= P2,

dP2

dx
= α1P2 + α2

X1

X1 + k
P1 − ω, (4.35)

dX1

dx
= X2,

dX2

dx
= α3X2 + α4

X1

X1 + k
P1 − ρ(1−X1).

where α1 =
1
ϵp
, α2 =

K1

ϵp
, α3 =

1
ϵx
, α4 =

K2

ϵx
, ω = γp

ϵp
, ρ = αx

ϵx
e−λθ.

For asymptotic solutions, P2 = 0, and X2 = 0, thus we obtain.

X1

X1 + k
P1 =

ω

α2

(4.36)

X1

X1 + k
P1 =

ρ

α4

(1−X1) (4.37)
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which upon simplification yields:

X⋆
1 := 1− γp

K1

K2

αx

eλθ (4.38)

P ⋆
1 :=

γp
K1

(X⋆ + k

X⋆

))
(4.39)

(P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) =

( γp
K1

(X⋆ + k

X⋆

)
, 0, 1− γp

K1

K2

αx

eλθ, 0
)

(4.40)

We wish to show that the fixed point (P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) is always unstable. The

instability implies that the river ecosystem is prone to fluctuations or disturbances

which poses challenges to aquatic organisms, affecting their population and the

overall ecosystem dynamics due to low oxygen. This is contained in Proposition 4

Proposition 4.4.1. The fixed point (P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) is unstable whenever it exists.

Proof. The Jacobian matrix of the system (4.35) is;

J =


0 1 0 0

α2
X1

X1+k
α1 α2

kP1

(X1+k)2
0

0 0 0 1

α4
X1

X1+k
0 α4

kP1

(X1+k)2
+ ρ α3

 (4.41)

Evaluating the Jacobian at (P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ), yields;

J(P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) :=


0 1 0 0

α2σ1 α1 α2σ2 0

0 0 0 1

α4σ2 0 α4σ2 + ρ α3
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(4.42)

where, σ1 =
(

αxK1−γpK2eλθ

αxK1−γpK2eλθ+αxkK1

)
, σ2 =

(
kαx

2K1γp
(αxK1−γpK2eλθ)(αxK1−γpK2eλθ+αxkK1)

)

J(P1
⋆, P2

⋆, X1
⋆, X2

⋆) =


0 1 0 0

a b c 0

0 0 0 1

e 0 f g

 (4.43)

where,a = α2σ1, b = α1, c = α2σ2, e = α4σ2, f = α4σ2 + ρ, g = α3

Thus, we have

J(P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) =

∣∣∣∣∣∣∣∣∣∣∣

−µ 1 0 0

a b− µ c 0

0 0 −µ 1

e 0 f g − µ

∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.44)

whose characteristic equation is

µ4 + n1µ
3 + n2µ

2 + n3µ+ n4 = 0, (4.45)

where n1 = −(α1 +α3), n2 = α3α1 −α4σ2 − ρ−α2σ1, n3 = α1(α4σ2 + ρ)+α2σ1α3,

n4 = α2σ1 − α2σ2
2α4.

By Routh-Hurwitz criteria, we shall have stability provided; n1 > 0, n3 >

0, n4 > 0 and (n1n2 − n3)n3 − n1
2n4 > 0. It is clear that n1 < 0 since α1 > 0,

α3 > 0 and n3 > 0, if

α1(α4σ2 + ρ) + α2σ1α3 > 0. (4.46)

Equation (4.46) is satisfied when σ1, σ2 > 0 and is achieved when αx > γpK2

K1
eλθ.
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Also n4 > 0 if α1σ(α4σ2 + ρ) > σ2
2α4 and σ1, σ2 > 0. Since n1 < 0, then the fixed

point (P ⋆
1 , P

⋆
2 , X

⋆
1 , X

⋆
2 ) is unstable.

We wish to show that there exist a temperature, θ, where θ is the temperature of

the water in a river, that is favorable for supporting aquatic life, that is there exist

a non zero concentration of oxygen in the river. This occurs when X⋆ ≥ 0, where

X⋆ is the positive deviation of concentration from the hypoxia levels as defined in

(4.27). Without loss of generality, we take it to be 0. Thus, using Equation (4.38),

we see that

X⋆ := 1− γp
K1

K2

αx

eλθ. (4.47)

Oxygen concentration approaches zero at a temperature θc, thus we have;

X⋆ = 0 = 1− K2γp
αxK1

eλθc , (4.48)

αxK1

K2γp
= eλθc , (4.49)

that upon simplification yields

θc :=
1

λ
ln
(K1αx

γpK2

)
, (4.50)

If θ < 1
λ
ln
(

K1αx

γpK2

)
where, θc > 0,

(
K1αx

γpK2

)
> 1, then the river environment

remains conducive to supporting aquatic life and if θ ≥ θc, then oxygen levels

depletes making the river ecologically dead, rendering it incapable of supporting

aquatic life.
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CHAPTER 5

NUMERICAL SIMULATIONS

5.1 Introduction

In this chapter, we use Matlab software for numerical simulations to describe the

theoretical results for Equation 3.21. We describe the variables and parameters

values to enable us make numerical simulations.

Variables and Parameters values Source

K1 8.27 (Pimpunchat et al., 2009)

γp 0.05-0.98 (Pimpunchat et al., 2009)

K2 44.10 (Pimpunchat et al., 2009)

λ 0.2 Estimate

αx 16.50 (Pimpunchat et al., 2009)

ϵx 0.000246 (Pimpunchat et al., 2009)

ϵp 0.000246 (Pimpunchat et al., 2009)

k 0.007 (Pimpunchat et al., 2009)

θ 1◦ − 45◦ Estimate

For numerical simulation, we use the following initial conditions;

P0 = 0.3,

X0 = 4.
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Figure 5.1: Pollutant concentration when q = 0.05kgm−1day−1

Figure 5.2: Pollutant Concentration when q = 0.98kgm−1day−1

Figure 5.1, show that when the rate of pollutant addition, q is small, the con-

centration of pollutant in the river is low and P (x, t) → 0.15 as x → ∞.
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Figure 5.2 shows that when the rate of pollutant addition is high, the concen-

tration of pollutant increases downstream as distance increases and P (x, t) → 4 as

x → ∞.

Clearly, from Figures 5.1 and 5.2, we see that the pollutant concentration in a river

depends on the rate of pollutant addition q.

Figure 5.3: Oxygen Concentration when θ < θc

Figure 5.3 shows that when the distance x increases, the concentration of oxygen

slightly decreases but remains high. In this case, we see that when the temperature

of the water in a river is less than the critical temperature, that is, θ < θc, the

concentration of oxygen is high and X(x, t) → 1 as x → ∞.
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Figure 5.4: Oxygen concentration when θc = θ

Figure 5.5: Oxygen concentration when θ > θc

Figures 5.4 and 5.5 show that when distance x increases, the concentration of

oxygen approaches zero; that is, X(x, t) → 0 as x → ∞. In these two cases, oxygen

concentration is not changing with distance as x increases as it goes to zero when

θ ≥ θc.
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Thus, we can see from Figures 5.3, 5.4 and 5.5 that oxygen concentration in

a river depends on temperature of the water. This results agrees with analytical

results in the sense that, when θ ≥ θc, X → 0 as distance increases.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Introduction

In this chapter, we present a summary of what we have found in this research.

Section 6.2 contains the conclusion while section 6.3 contains the recommendation.

6.2 Conclusion

We have formulated a model of temperature dependent dissolved oxygen and pollu-

tant concentration in a river and found that the concentration of dissolved oxygen

is dependent on rate of pollutant addition into the river and temperature of the

water.

By using both the analytical and numerical results, we have shown that, there

is a temperature, θc beyond which oxygen levels approach zero; that is, X = 0,

as x → ∞ and if θ ≥ θc, then oxygen levels depletes making the river ecologically

dead. We have also shown that if θ < θc, then the river remains conducive to

supporting aquatic life.

Furthermore, from the stability analysis, we have shown that when the river is

highly polluted, a slight change in temperature leads to catastrophe.

We have shown that when θ = 0, there is certain amount of pollutant if added
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into the river leads to catastrophe; that is, if

βSK1

K2

= q. (6.1)

Therefore, it is important to monitor and manage the pollutant load, as well as

temperature to ensure that oxygen concentration levels in the water remains above

a critical threshold.

6.3 Recommendations

Water pollution remains a considerable problem in rivers for countries like Kenya

for instance in Nairobi river. Though the establishment of a new strategies to

curb pollution and enhance dissolved oxygen is still a problem, there is a need to

strengthen control strategies at hand to decrease pollution.

We recommend adaptive strategies to address extreme temperature fluctuations

and their effects and reduce river pollution.

We have considered a mathematical model, where we considered the effect of

temperature on the rate of oxygen transfer from the air into the river, ignoring the

effect of temperature on the rate of pollutants addition into the river under the

assumption that pollutant addition into the river are influenced by other factors

other than temperature. In future, temperature-dependent pollutant addition can

be considered. In future also time lag for temperature variation to impact water-

temperature can be considered, that is, consider the time it takes for temperature

variation to impact water temperature.
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