MAASAI MARA UNIVERSITY REGULAR UNIVERSITY

EXAMINATION 2023/2024 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHALOR OF SCIENCE IN APPLIED STATISTICS

COURSE CODE: STA 4243-1

COURSE TITLE: MEASURE AND PROBABILITY THEORY

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- i. Question **ONE** is compulsory
- ii. Answer any other **TWO** question

QUESTION ONE 20 MARKS

State three properties of a measure. (3mks)

- a) State three properties of the outer measure of a set E (3mks)
- b) The Lebesque outer measure of an empty set is zero. Proof (3mks)
- c) The outer measure of an interval equals its length
- d) If $M^*(A)=0$, Prove that $M^*(AUB) = M^*(B)$ For any set B (3mks)
- e) Let {Ei: 1 ≤ i ≤ n} be a finite collection of disjoint measurable sets. If A ≤ R, then M*(∪_{i=1}[∞](AUE_i) = M*(An{∪_{i=1}[∞] E_i}) = ∑_{i=1}ⁿ M* (AnE_i) Proof. (5mks)

QUESTION TWO 15 MARKS

1. Every interval is Lebesque measurable. Proof (15mks)

QUESTION THREE 15 MARKS

2. If (E_i) is a sequence of measurable sets, then $M(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{n} M(E_i)$ Proof (5mks)

b) If E_i is a sequence of measurable sets then $\bigcup_{i=1}^{\infty} E_i$ and $\prod_{i=1}^{\infty} E_i$ are measurable sets. Proof (10mks)

QUESTION FOUR 15 MARKS

- 3. For any sequence of sets E_n , $M^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{i=1}^{\infty} M^*(E_n)$ Proof (10mks)
 - a) The set (0,1) is countable, Proof. (3mks)
 - b) Every interval is not countable, Proof. (2mks)