

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2023/2024

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

BACHELOR'S OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING THIRD YEAR SECOND SEMESTER COURSE CODE: STA 3235-1

COURSE TITLE: STATISTICAL QUALITY CONTROL AND ACCEPTANCE SAMPLING

DATE:

TIME:

INSTRUCTIONS: Attempt Question one and any other Two Questions

Show your workings as marks will be awarded for correct working.

Ouestion 1

- a. Differentiate the following terms as used in statistical quality control.
 - i. 100% Inspection and Sample Inspection.

(2 marks)

ii. Producer risk and Consumer risk.

(2 marks) b. In a single probability plan N=500, n=50 and c=3, if the product quality shows that there

- is a 1.5% chance of having a defective item in the lot, calculate the Average Outgoing Quality (AOQ). (4 marks)
- c. The data below shows the results of 10 samples taken from production line of a certain production. Use it to construct and X-bar chart with R as the measure of variation hence comment on the control status of the process. (6 marks)

comment on the com	(U mai no)					
Sample Number	Observation					
1	630	637	641			
2	631	632	623			
3	629	632	634			
4	635	631	632			
5	620	629	631			
6	614	630	635			
7	661	640	626			
8	629	628	623			
9	624	627	634			
10	632	632	634			

d. What **Rectification Inspection** and what is its goal?

(2 marks)

- e. Design specifications require that a key dimension on a product measure 101±16 units. A process being considered for producing this product has a standard deviation of four units.
 - i. What can you say (quantitatively) regarding the process capability? Assume that the process is centered with respect to specifications. (2 marks)
 - ii. Suppose the process average shifts to 96. Calculate the new process capability. (2 marks)

Question 2

a. The data below shows the observation of 15 samples of size 6 each collected from a production line. Use the data to construct a Cusum chart that would detect a shift of 0.4 units in the production center, hence comment on the control status of the process. (only draw the upper control line). (10 Marks)

Sample Number						
1	0.8	0.7	0.9	0.8	1.2	1.1
2	0.7	0.8	1.1	1.1	1.2	0.8
3	0.6	0.5	0.8	0.7	0.8	1
4	1.1	1.4	1.3	0.7	1.6	1.4
5	1	1.2	1.1	0.9	0.8	0.7
6	0.9	1.1	0.7	0.9	0.8	0.9
7	0.7	0.7	0.8	0.7	0.7	0.7
8	0.8	1	1.1	1	0.8	0.9
9	1	0.7	0.8	0.9	0.9	0.9
10	0.9	0.9	0.8	0.7	0.9	1
11	0.9	0.8	1	0.7	0.8	0.7
12	1	0.8	0.8	0.7	0.7	1
13	0.8	0.7	0.8	0.7	0.7	0.8
14	0.9	0.8	0.9	0.8	0.7	0.9
15	1	0.8	0.9	0.8	0.7	0.7

- b. Assume that the process in (a) is in control state and a customer request the company to produce for him products with specifications of 1±0.4, what is the actual process capability to produce such products? (3 marks)
- c. Based on the index computed in (b) is the production process centered around the required specification and if not by how much is it off specification. (2 marks)

Question 3

- a. A single sampling plan is defined as N=2000, n=40, c=3. There is a 0.1% chance that a product is defective in a lot of products supplied by the company.
 - i. Explain how this sampling plan works.
 - ii. Determine the probability of accepting lot of products in this plan. (4 marks)

(3 marks)

- iii. Determine the probability of rejection a sample in this plan. (1 mark)
- iv. Calculate the Average Outgoing Quality of these products and comment on the results. (3 marks)
- b. Give four reasons why acceptance sampling may be preferred over 0% inspection as a lot sentencing technique. (4 marks)

Question 4

- a. A double sampling plan is given as N=1500, n₁=48, c₁=2, n₂ =130, c₂=4. If a lot has 0.5% chance of having a defective item, calculate the probability of accepting this lot based on this sampling plan. (7 marks)
- b. The following data refers to usual defects found at inspection of the first 10 samples of size 50 each. Use the data to construct np and c chart, hence comment on the control status of the process based on each chart. (8 marks)

Sample Number	1	2	3	4	5	6	7	8	9	10
No. of defectives	2	1	1	3	2	3	4	2	2	0