

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

BACHELOR OF SCIENCE IN APPLIED STATISTICS

COURSE CODE: STA 3229-1 COURSE TITLE: TEST OF HYPOTHESES

DATE: 4/6/ 2024

TIME: 1430-1630HRS

INSTRUCTIONS

ANSWER QUESTION <u>ONE</u> AND ANY OTHER TWO QUESTIONS

QUESTION ONE (20 MARKS)

- a) Distinguish between statistical hypothesis and hypothesis testing as used in testing hypothesis (2 marks)
- b) Define the most powerful and uniformly most powerful critical regions for testing.

 $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ where θ_1 and θ_0 are specified values of the parameter θ . (3 marks)

- c) Suppose that random variable X is randomly distributed with unknown mean, μ and variance 400. If a random sample of size 25 taken from X, find the power of test in testing $H_0: \mu = 165$ against $H_1: \mu = 162$ given the acceptance region is given by $\varpi = \{x: 161.08 \le \overline{X} \le 168.92\}$ (4 marks)
- d) Given $X_1, X_2, ..., X_n$ be random sample from a population whose density is

$$f(x,0) = \begin{cases} \theta^{x} (1-\theta)^{1-x} , x = 0, 1\\ 0 & otherwise \end{cases}$$

Obtain the critical region for testing the hypothesis
$$H_{0}: \theta = \theta_{0} \quad against \quad H_{1}: \theta > \theta_{0} \quad where \quad \theta_{0} \text{ is a specified value} \qquad (5 \text{ marks})$$

- e) Suppose the two samples of sizes 6 and 7 respectively are randomly selected from two normally distributed populations with variances σ_1^2 and σ_2^2 . Suppose we calculate S₁=4.2, S₂= 2.9. Test the hypothesis that $\sigma_1^2 = \sigma_2^2$ against a two sided alternative at 5% level of significance. (2 marks)
- f) Let X₁, X₂,..., X_n be the random sample of the size n from X which is distributed as $N(\mu,1)$. To test $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, we reject H₀ whenever $\overline{X} > C$. Find the value of C if n =25 and $\alpha = 5\%$. (4 marks)

QUESTION TWO (15 MARKS)

a) Let X and Y be two independently distributed random variables with distributions X ~N [μ₁,σ₁²] and Y~ [μ₂,σ₂²] respectively. Let x₁ x₂ x_m be a random sample of size m from X and y₁, y₂,, y_n be Another independent random sample of size n from Y.

Derive the likelihood ratio test for testing H₀: $\mu_2 = \mu_1$ against H₁: $\mu_1 \neq \mu_2$.

Assuming
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 (7 marks)

b) The following statistics were obtained from data drawn from two independent populations X and Y which are normally distributed as follows: X ~N [μ_1, σ_m^2] and Y~ [μ_2, σ_n^2]

$$\overline{X} = 1.02,$$
 $\sum_{i=1}^{m} (X_1 - \overline{X})^2 = 2.44, m = 11$
 $\overline{Y} = 1.66,$ $\sum_{i=1}^{n} (Y_1 - \overline{Y})^2 = 4.23, n = 13$

Test H₀: $\mu_1 = \mu_2$ against H₁: $\mu_1 \neq \mu_2$. Use $\infty = 5\%$

c) A study was conducted of the effects of a special class designed to aid students with verbal skills. Each child was given a verbal skills test twice, both before and after completing a 4-week period in the class. Let Y = score on exam at time 2 - score on exam at time 1. Hence, if the population mean μ for Y is equal to 0, the class has no effect, on the average. For the four children in the study, the observed values of Y are 8-5=3, 10-3=7, 5-2=3, and 7-4=3 (e.g. for the first child, the scores were 5 on exam 1 and 8 on exam 2, so Y = 8-5=3). It is planned to test the null hypothesis of no effect against the alternative hypothesis that the effect is positive, based on the following results from a computer software package:

(3 marks)

(1 marks)

(2 marks)

Variable	No. of cases	Mean	Std.dev	Std.Error
Y	4	4	2.000	1.000

- i. Set up the null and alternative hypotheses
- ii. Calculate the test statistic, and indicate whether the P-value was below 0.05, based on using the appropriate table(2 marks)
- iii. Make a decision, using $P_value of = .05$. Interpret.

QUESTION THREE (15 MARKS)

a) Consider a simple regression model

$$y_i = \alpha + \beta x_i + e_i$$

Where α, β are constants and $e_i \sim N(0, \sigma^2)$

Derive a test statistic for testing the hypothesis $H_0: \beta = 0$ against $H_1: \beta \neq 0$. Take the significance level to be $\alpha = 5\%$ (8 marks)

b) Test the hypothesis $H_0: \beta = 0$ against $H_1: \beta \neq 0$ at $\alpha = 5\%$ if observations are

(1, 2), (3, 2), (2, 10), (8, 6)

Brand	Fatty Aci				
А	13.5	13.4	14.1	14.2	
В	13.2	12.7	12.6	13.9	
С	16.8	17.2	16.4	17.3	18.0
D	18.1	17.2	18.7	18.4	

c) Four different brands of margarine were analyzed to determine the level of some unsaturated fatty acids. The data are shown below.

i) Perform an appropriate non parametric test at $\alpha = 0.05$.

(5 marks)

QUESTION FOUR (15 MARKS)

a) Let $X_1, X_2, ..., X_n$ be a random sample of size n from a normal population with unknown mean μ and unknown variance σ^2 . Obtain the likelihood ratio critical region for testing the hypothesis

 $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$, where σ_0^2 is specified. (7 marks)

- b) A random sample of n = 7 observations from a normal population produced the following measurements 4,0,6,3,3,5,7. Do the data provide sufficient evidence to indicate that $\sigma^2 < 1$? Take α to be 5%. (3 marks)
- c) A forensic pathologist wants to know whether there is a difference between the rate of cooling of freshly killed bodies and those which reheated, to determine whether you can detect an attempt to mislead a Coroner about the time of death. He tested several mice for their cooling constant both when the mouse was originally killed and when after the mouse was reheated. The results are presented in the table below.

Freshly Killed	400	395	450	402	345	490	450	432	367	487		
Reheated	378	321	387	400	389	402	354	389	355	376	410	360

The distribution of the differences is unknown. Is there any difference in the cooling constants between freshly killed and reheated corpses? (5 marks)

END//