

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES BACHELOR OF APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 2218-1 COURSE TITLE: INTRODUCTION TO TIME SERIES ANALYSIS

DATE: 16/4/2024

TIME: 1430-1630 HRS

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS

- i) Answer Question **One** and **any Two** Questions
- ii) Show all the workings clearly
- iii) Do not write on the question paper

Question One –(20 Marks)

a) Describe the three steps in model building in time series.	(4 Marks)
b) Consider the process	
$x_t = 15 + 0.6x_{t-1} + e_t$	
where $\sigma_e^2 = 4$.	
i) Is this process stationary?	(1 Mark)
ii)Calculate the autocorrelation function of the process.	(4 Marks)
c) Consider the MA(1) process given by	
$x_t = 6 + e_t + 0.2e_{t-1}$	
Where $\sigma_e^2 = 3$.	
i) Is the process stationary?	(1 Mark)
ii)Is the process invertible? If so, express the process in autoregressive form.	(4 Marks)
d) Explain the main stages in setting up a Box-Jenkins forecasting model.	(4 Marks)
e) Define spectrometer or periodgram.	(2 Marks)

Question Two – (15 Marks)

a) Consider the set of independent and identically distributed random variables $\{e_t\}$ such that $E(e_t) = 0$ and $Var(e_t) = \sigma_e^2$. Let the process X_t be given by $X_t = \theta e_{t-1} + e_t$ where θ is a constant. Show that X_t is stationary. (8 Marks)

b) Consider a process given as

$$X_t = e_1 + e_2 + \dots + e_t$$

Where the variables $\{e_t\}$ are as in (a) above. Show that X_t is not stationary.	(3 Marks)
c) Name and describe the components of a time series.	(4 Marks)
Orrestory Three (15 Marsha)	

Question Three (15 Marks)

- a. Explain the objective of time series analysis (4marks)
- b. Given the following data, use the method of semi average to:

Year	1997	1998	1999	2000	2001	2002	2003
Sales in	102	105	114	108	116	112	120
thousand							

i) Fit the trend line

- ii) Tabulate the trend values
- c. The first order autoregressive process AR(1) is the Markov process defined by the 1st order stochastic differential equation;

(4marks)

(2marks)

(4marks)

$$\mathbf{X}_{t} = \alpha_1 \mathbf{X}_{t-1} + \ell_t$$
 where $|\alpha| < 1$.

Show that this process is stationary by proving that the expectation

$$E(X_t) = 0 (5marks)$$

Question Four (15marks)

- a) State the component of time series that influence the following observed time series (3marks)
 - i) The rate of inflation in Kenya's economy is high during electioneering period.
 - ii) The business activities dropped at the coastal region after unpredicted Tsunami devastations.
 - iii) The experience of high turns up of passengers during end months.
- b) State the importance of the time series analysis

c) The export of a certain commodity in millions of ksh during 2001-2006 is given below

Year	2001	2002	2003	2004	2005	2006
Amount	100	107	128	140	181	192

i.	Fit a parabola $Y = a + bX + cX^2$ to the data.	(4marks)
ii.	Estimate the price of the commodity for the year 2007.	(2marks)

iii. Plot the actual and the trend values on the graph(sketch) (2marks)

//END//