MAASAI MARA UNIVERSITY REGULAR UNIVERSITY

EXAMINATION 2023/2024 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHALOR OF SCIENCE IN APPLIED STATISTICS

COURSE CODE: STA 2217-1

COURSE TITLE: MATHEMATICAL STATISTICS II

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- i. Question **ONE** is compulsory
- ii. Answer any other **TWO** question

QUESTION ONE 20 MARKS

(a)	Giving relevant example, explain the term Random Variable	(3mks)
(b) A manufacturing company inspects a batch of transistors occasionally and notices that 90% has no defective one, 5% contain one defective, 3% likely contain 2 and about 2% contain 3 defectives transistors.		
i)	Define distribution of a random variable	(lmk)
ii)	Develop a probability distribution table	(3mks)
iii)	Work out the mean and standard deviation of transistors being defectives	
		(5mks)

- (c) Differentiate between discrete and continuous random variable (2mks)
- (d) Define probability distribution function of a discrete random variable (3mks)
- (e) The continuous random variable I has pdff(x) where $f(x) = \{\frac{1}{8}x\}$

0 < x > 4

Show that it is a valid pdf and hence find E (x) and Var (x). (3marks)

QUESTION TWO 15 MARKS

a) Let x be a continuous random variable with pdf

$$f(x)\begin{cases} ax & 0 \le x \le 1\\ a & 1 \le x \le 2\\ -ax + 3a & 2 \le x \le 3 \end{cases}$$
I. Determine the constant a (3marks)
II. Compute probability of p (≤ 1.5) (3marks)

b) A fair die is tossed once. Let x, be the number on the upturned face. Compute the cumulative function of x. (7marks)

QUESTION THREE 15 MARKS

a) Show that
$$\mu_4 = \mu_4 - 4\mu_3\mu_1 + 6\mu_2(\mu_1)^2 - 3(\mu_1)^4$$

b) Let x be a continuous random variable with pdf f(x) given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x > 0 \end{cases}$$

.

Elsewhere;

- I. Find its M.G.F if it exists
- II. Derive the expected value of x and the variance of x from the m.g.f (3marks)
- Verify the results by computing the above quantities directly from the III. deviation. (3marks)

(5 marks)

(3marks)

2

QUESTION FOUR 15 MARKS

(a) Let $x \ge 0$ be a random variable and let t > 0.

Prove the Markov In-equality $P(X \ge t) \le \frac{E(x)}{t}$ (4mks)

- (b) A post office handles, on average, 10,000 letters a day. What can be said about the probability that it will handle at least 15000 letters tomorrow? (use Markov in-equality) (3mks)
- (c) If μ and σ are the mean and standard deviation of a random variable X, show that for any positive constant *k*, the probability is at least $\left(1 \frac{1}{K^2}\right)$ that X will take on a value within *k* standard deviation of the mean. i.e. $P([X \mu] < r\sigma) \ge 1 \frac{1}{k^2}$ (8mks)