

# **MAASAI MARA UNIVERSITY**

# REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

# SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BSC COMPUTER SCIENCE PROGRAMME

**COURSE CODE: COM 3207** 

**COURSE TITLE: COMPUTER APPLICATIONS** 

2

**DATE:** 6<sup>th</sup> June 2024

TIME: 1100-1300 HRS

**INSTRUCTIONS TO CANDIDATES** 

Answer Question ONE and any other TWO questions

## **QUESTION ONE**

a. Group the following variables into the appropriate level of measure

(3 marks)

- i. Medal award in an Olympic game
- ii. Temperature in <sup>0</sup>C
- iii. Religion
- b. Give the meaning of the following terms as used in data management

(4 marks)

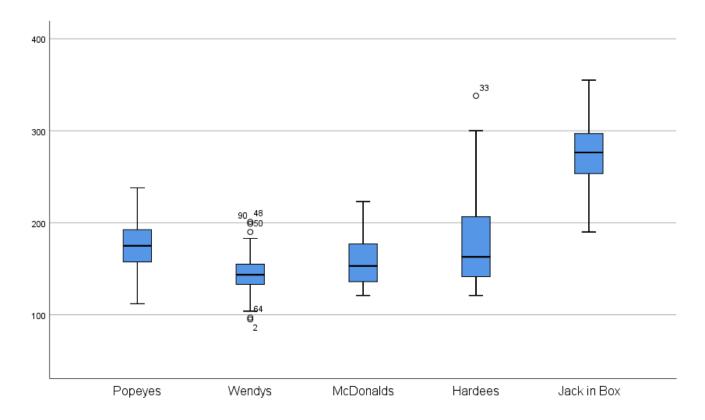
- i. Selection
- ii. Sorting
- iii. Aggregating
- iv. Restructuring
- c. A data set contains Five variables (Gender, Age, Weight, Religion and Marital\_status). The variables Gender, Religion and Marital status were coded as follows: Gender (1 = Female, 2=Male), Religion (1 = Christian, 2= Catholic, 3 = Muslim, 4 = Other religions), Marital status (1=Single, 2 = Married, 3 = Widowed, 4 = Separated). Write down SPSS code that will do the following;

Select Females who are Muslims and weigh at least 35 Kg (2 marks)

i.

**ii.** Filter out Married youths (A youth is a person between 18 – 35 year)

(2 marks)


- iii. A 32-year-old single lady is looking for a Muslim guy who is older than her. Kindly write a code to assist him with this for the given data set **(2 marks)**
- **d.** There is a believe that weight difference is due to gender. To ascertain this believe you decided to pick both 15 male and female students to participate in your study. The output for your analysis was as follows;

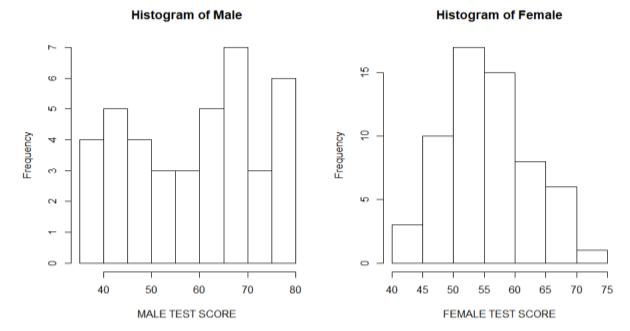
### Independent Samples Test

|                             |                             | Levene's Test for Equality of<br>Variances |      |                             |        | Hest for Equality of Means |                                              |        |       |
|-----------------------------|-----------------------------|--------------------------------------------|------|-----------------------------|--------|----------------------------|----------------------------------------------|--------|-------|
|                             |                             | 8                                          |      | Sig. (2-<br>Sig. df tailed) | - Mean | Std. Error                 | 95% Confidence Interval of the<br>Difference |        |       |
|                             |                             | F                                          | Sig. |                             |        | Difference                 | Difference                                   | Lower  | Upper |
| weight of individuals in Kg | Equal variances assumed     | .031                                       | .862 | 28                          | .695   | -1.600                     | 4,045                                        | -9.887 | 6.687 |
|                             | Equal variances not assumed |                                            |      | 27.998                      | .695   | -1.600                     | 4.045                                        | -9.887 | 6.687 |

| i.   | State the null and alternative hypothesis for this test                   | (2 marks)    |
|------|---------------------------------------------------------------------------|--------------|
| ii.  | Which assumption is performed on this test? Comment on it.                | (2marks)     |
| iii. | Which assumption is ignored and what is the effect?                       | (2 marks)    |
| iv.  | Using the confidence interval, comment on this believe.                   | (2 marks)    |
| v.   | Will the decision to reject the null hypothesis lead to any type of error | or? If yes   |
|      | which type of error                                                       | (2 mark)     |
| vi.  | Which test is appropriate if the required assumptions for this test do    | oes not hold |
|      |                                                                           | (1 marks)    |

e. The figure below shows the results of a statistical analysis of number of customers who visited a restaurant in a certain month use it to answer the questions that follows;




i. Which restaurant had the highest number of extreme observations?

(1 mark)

- ii. In which restaurants were the number of customers who visited normally distributed? (2 marks)
   Give two reasons why standard deviation is not a good measure of dispersion in measuring the average variation for Hardees restaurant (2 marks)
- iii. Giving appropriate reason suggest the best measure of central tendency for Wendy's restaurant (1 mark)

# **QUESTION TWO**

a. The figure below shows the distribution of scores for students in a class, use it to answer the questions that follows;



- i. Describe the distribution of the male and female test scores. (2 marks)
- ii. Can we use independent sample t-test to compare the scores for males and female? Kindly justify your reasoning. (2 marks)
- iii. From the above plot which group of students do you think performed well? Kindly justify your reasoning. (2 marks)
- b. Below is the regression output to investigate whether height of an individual affects his/her weight. Use the outputs below to answer the questions.

#### **ANOVA**<sup>a</sup>

|   | Model        | Sum of<br>Squares | df | Mean Square | F     | Sig.              |
|---|--------------|-------------------|----|-------------|-------|-------------------|
| ĺ | 1 Regression | 620.575           | 1  | 620.575     | 6.129 | .020 <sup>b</sup> |
|   | Residual     | 2835.292          | 28 | 101.260     |       |                   |
|   | Total        | 3455.867          | 29 |             |       |                   |

- a. Dependent Variable: weight of individuals in Kg
- b. Predictors: (Constant), height of individuals inches

#### Coefficients<sup>a</sup>

|      |                              | Unstandardize | d Coefficients | Standardized<br>Coefficients |   |      |
|------|------------------------------|---------------|----------------|------------------------------|---|------|
| Mode | ıl                           | В             | Std. Error     | Beta                         | t | Sig. |
| 1    | (Constant)                   | 114.641       | 19.037         |                              |   | .000 |
|      | height of individuals inches | 787           | .318           | 424                          |   | .020 |

a. Dependent Variable: weight of individuals in Kg

| i.   | Calculate the t values for table 2.                                | (2 marks) |
|------|--------------------------------------------------------------------|-----------|
| ii.  | Write down the regression equation                                 | (2 mark)  |
| iii. | What is the weight for an individual who is 62.5 inches tall?      | (1 mark)  |
| iv.  | State three assumptions for this test                              | (3 marks) |
| v.   | Can we conclude that height is a significant factor for studying w | eight?    |
|      | Justify.                                                           | (2 marks) |
| vi.  | Calculate the $R^2$ value and interpret it                         | (4 marks) |

## **QUESTION THREE**

**a.** Differentiate using examples between descriptive and inferential statistics

(4 marks)

**b.** A researcher wanted to investigate if the average number of crimes reported per day is different between Narok, Nakuru and Kericho Counties. The researcher recorded the number of crimes reported in the three town in a single week. A one-way analysis of variance test was carried out on the data set and the results were as illustrated below;

# **Descriptives**

Number of crimes reported

| County  | N  | Mean  | Std. Deviation | Std. E | rror  | 95%          |
|---------|----|-------|----------------|--------|-------|--------------|
|         |    |       |                |        |       | Confidence   |
|         |    |       |                |        |       | Interval for |
|         |    |       |                |        |       | Mean         |
|         |    |       |                |        | L. B  | U. B.        |
| Narok   | 7  | 11.00 | 2.449          | .926   | 8.73  | 13.27        |
| Nakuru  | 7  | 21.29 | 1.799          | .680   | 19.62 | 22.95        |
| Kericho | 7  | 16.14 | 1.574          | .595   | 14.69 | 17.60        |
| Total   | 21 | 16.14 | 4.693          | 1.024  | 14.01 | 18.28        |

|               | ANOVA   |    |              |   |  |  |  |  |
|---------------|---------|----|--------------|---|--|--|--|--|
| Source of     | Sum of  | df | Mean Squares | F |  |  |  |  |
| variatio      | Squares |    |              |   |  |  |  |  |
| Between       | 370.286 |    |              |   |  |  |  |  |
| groups        |         |    |              |   |  |  |  |  |
| Within groups |         |    |              |   |  |  |  |  |
| Total         | 440.571 |    |              |   |  |  |  |  |

i) State the null and alternative hypothesis for the study

(2 marks)

ii) Complete the ANOVA table above

(7 marks)

- Based on the test results above, at 95% level of confidence is there sufficient evidence to show that the number of crime reported in the three towns is different. (3 marks)
- iv) State two assumptions that must be satisfied in order to carry out the above test (2 marks)
- v) Give the corrective measure that would be taken to test the hypothesis made in the study if each of the assumptions in (iv) are violated (2 marks)

# **QUESTION FOUR**

a. From question (2b), the investigator was not satisfied and decided to add another variable Age to the model. The output now looks as follows;

# **ANOVA**<sup>a</sup>

|   | Model |            | Sum of<br>Squares | df | Mean Square | F     | Sig.              |
|---|-------|------------|-------------------|----|-------------|-------|-------------------|
| ĺ | 1     | Regression | 751.354           | 2  | 375.677     | 3.751 | .037 <sup>b</sup> |
|   |       | Residual   | 2704.513          | 27 | 100.167     |       |                   |
|   |       | Total      | 3455.867          | 29 |             |       |                   |

a. Dependent Variable: weight of individuals in Kg

b. Predictors: (Constant), Age, height of individuals inches

#### Coefficients<sup>a</sup>

|       |                              | Unstandardize | d Coefficients | Standardized<br>Coefficients |        |      |
|-------|------------------------------|---------------|----------------|------------------------------|--------|------|
| Model |                              | В             | Std. Error     | Beta                         | t      | Sig. |
| 1     | (Constant)                   | 136.265       | 26.770         |                              | 5.090  | .000 |
|       | height of individuals inches | 873           | .325           | 470                          | -2.686 | .012 |
|       | Age                          | 428           | .374           | 200                          | -1.143 | .263 |

- a. Dependent Variable: weight of individuals in Kg
- i. Which type of model is fitted above?

(1 marks)

ii. Give any three assumptions for this type of regression

(3 marks)

iii. By stating the appropriate null and alternative hypothesis, comment on the adequacy of this model (4 marks)

iv. Comment on the significance of the new variable added to the model

(2 marks)

b. Use the following logistic regression output to answer the questions below. The dependent variable is cancer.

#### Variables in the Equation

|                     |           | В      | S.E.  | Wald  | df | Sig. | Exp(B) |
|---------------------|-----------|--------|-------|-------|----|------|--------|
| Step 1 <sup>a</sup> | Gender(1) | -2.077 | .925  | 5.035 | 1  | .025 | .125   |
|                     | Age       | .130   | .098  | 1.744 | 1  | .187 | 1.139  |
|                     | Height    | 033    | .091  | .134  | 1  | .714 | .967   |
|                     | Weight    | 002    | .047  | .002  | 1  | .964 | .998   |
|                     | Constant  | -1.307 | 9.569 | .019  | 1  | .891 | .271   |

- a. Variable(s) entered on step 1: Gender, Age, Height, Weight.
- i. What are the assumptions of this test

(2 marks)

ii. Based on the analysis, explain how the variable gender influence cancer

(2 marks)

iii. Using the variable age, explain what Exp(B) indicates

(2 marks)

iv. What is your comment on the significance of this variables

(1 mark)

c. Under what circumstances do we use Z test instead of t test

(2 marks)

d. What is type II error and how can we control it

(2 marks)