

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/24 ACADEMIC YEAR *FOURTH* YEAR *SECOND* SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE (PHYSICS) AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 4244-1

COURSE TITLE: STATISTICAL MECHANICS

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Use of sketch diagrams where necessary and brief illustrations are encouraged.
- 3. Read the instructions on the answer booklet keenly and adhere to them.

You may require the following useful constants and formulae

(i) $\ln N! = N \ln N - N$ and $N! = \left(\frac{N}{e}\right)^{N}$ (ii) $\int e^{-ax^{2}} = \sqrt{\frac{\pi}{a}}$ (iii) $\ln(1 \pm x) = 1 \pm x \pm \frac{1}{2}x^{2} + \dots$ (iv) $\int \frac{dx}{e^{x} + 1} = -\ln(1 + e^{x})$ (v) volume of hypersphere, $V_{a} = \frac{\pi f}{\left(\frac{1}{2}f\right)!}$ where f is degrees of freedom. (v) Planck's constant, $h = 6.63 \times 10^{-34} J.s$ (vii) mass of an electron, $M_{e} = 9.11 \times 10^{-31} kg$ (viii) Boltzmann's constant, $K_{B} = 1.38 \times 10^{-23} JK^{-1}$ (ix) s.h.c of water = $4.19 Jg^{-1}K^{-1}$

QUESTION ONE: [20 marks] a) State the expression that unites thermodynamics and statistical mechanic

	a) State the expression that unites thermodynamics and statistical mechanics.		
	Define the terms in the expression.	(2mks)	
	b) A classical system is to be examined from a quantum mechanical point of view;		
	State two modifications that may need to be done to achieve this.	(2mks)	
c) Apart from distinguishability/ indistinguishability of identical particles, what are the			
	other differences between classical and quantum statistics.	(4mks)	
	d)State four applications of statistical mechanics	(4mks)	
	e) Consider the energy of states of an assembly to be $\in_1, \in_2,, \in_k$ and in the statistical		
	equilibrium, the number of systems assigned to these energy states a	re	
	n_1, n_2, \dots, n_k respectively. Obtain expressions for the total number of the systems		
	and total energy of the assembly.	(4mks)	
	f) State and explain the basic postulate of statistical mechanics	(2mks)	
	g) Define the term "partition function" and state why it is introduced in distribution		
	functions	(2mks)	

QUESTION TWO: [15 marks]

a)	a) In a system of 14 distinguishable particles distributed in two equally probable			
	halves of a box, determine the probability of (7,7)	(4mks)		
b)	Under what conditions can Bose-Einsten become Maxwel	l-Boltzmann		
	distribution?	(2mks)		
c)	i. What is chemical potential?	(1mk)		
	ii. What is its value in Boltzmann distribution at high temperatures a	ind not too		
	high densities	(1mk)		
	iii. what role does it play in the Fermi-Dirac function	(1mk)		
d)	d) Assume the earth's atmosphere is pure nitrogen in thermodynamic equilibrium			

at a temperature of 300 K. Calculate the height above sea level which the density of the atmosphere is one-half its sea-level value. (6mks)

QUESTION THREE: [15 marks]

- a) You have two particles to distribute in three states. Use a diagram to show how you achieve this for Fermi-Dirac distribution. What rule guides you in doing this? (4mks)
- a) The energy *S* is defined as $S = k \log C$ and the most probable distribution is given

by
$$n_i = \omega_i \exp(-\alpha - \beta \epsilon_i)$$
 where $\beta = \frac{1}{kT}$ and $\exp(\alpha) = \frac{V}{Nh^3} (2\pi mkT)^{\frac{3}{2}}$. Derive an

expression for the ideal gas equation given as PV = NkT (6mks)

b) Show that the quantity $(2\pi mkT)^{\frac{1}{2}}$ has the character of an average thermal momentum of a particle or system. Knowing this, write down the value of the de Broglie wavelength associated with this system (5mks)

QUESTION FOUR: [15 marks]

a) Consider an idealization of a crystal which has *N* lattice points and the same number of interstitial positions (places between the lattice points where atoms can reside). Let *E* be the energy necessary to remove an atom from a lattice site to an interstitial position and let *n* be the number of atoms occupying interstitial sites in equilibrium.

- i. What is the internal energy of the system?(2mks)ii. What is the entropy S? Give an asymptotic formula valid when $n \gg 1$ (5mks)iii. In equilibrium at temperature T, how many such defects are there in the solid, i.e., what is n? (Assume $n \gg 1$)(2mks)
- b) Molecules enclosed in a container are in random colliding motion, the Maxwell-Boltzmann distribution gives an idea of finding molecules with speeds between v and v + dv. Describe exhaustively the Maxwell-Boltzmann plot. (6mks)