

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTHY SCIENCES BACHELOR OF SCIENCE(PHYSICS) AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 3221-1 COURSE TITLE: Quantum Mechanics

DATE: 28/5/24

TIME: 8.30AM - 10.30AM

INSTRUCTIONS TO CANDIDATES

- Question One is Compulsory
- Answer Any Other Two Questions
 - You may use the following Constants
 - h = 6.64 x 10 34 Js, c= 3 x 10 8 m/s, RH= 1.097 X 107 m-1
 - $m_e = 9.11 X 10-31 kg, e = 1.60 X 10-19 C, m_p = 1.67 X 10-27 kg$ This paper consists of printed pages. Please turn over.

QUESTION ONE(20 Marks)

a. State three properties of Matter waves(3marks)b. What is Quantum Mechanics?(1marks)**c.** Give three characteristics of a well behaved wave function $\Psi(x)$ (3marks)d. Given the wave function $\Psi(x)$ is given by $\psi = e^{i(kx - \omega t)}$ show that $E = \frac{p^2}{2m}$ using the energy operator. Where E is the energy, p is the momentum , m is the mass of the electron, ω is the angular frequency(3marks)

g. Verify that momentum Operator p acting on the wave function $\Psi(x, t)$ for a particle of momentum p it gives p times the wave function $\Psi(x, t)$, given as (3marks)

$$\widehat{p}\psi = p\psi$$

i. Explain how Compton effect disagrees with photoelectric effect. (2 marks)

j. Calculate the de Broglie wavelength for an electron ($m_e = 9.11 \text{ X } 10^{-31} \text{ kg}$) moving at 1.00 x 10^7 m/s . (2 marks)

k. (i) State the Heisenberg uncertainty principle

(ii)The speed of an electron is measured to be 5.00×10^3 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty in determining the position of this electron. (2marks)

QUESTION TWO [15 marks]

In quantum mechanics, the total energy, the kinetic energy, and the momentum are expressed in terms of differential operators. The wave function is described by the function

 $\psi = e^{i(kx - \omega t)}$. Given that p=ħk and E=ħ ω ,

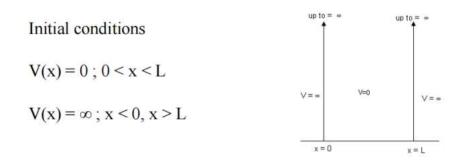
i. show that $E = i\hbar \frac{d}{dt}$, [3marks] ii. $K = -\frac{\hbar^2}{2} \frac{d^2}{dt}$ and [3marks]

iii.
$$p = -i\hbar \frac{d}{dx}$$
 [4marks]

(1 marks)

QUESTION THREE [15 Marks]

A particle moving freely in one-dimensional "box" of length 'L' trapped completely within the box is imagined to be as a particle in a potential well of infinite depth. As shown in the figure below



Determine an expression for the energy Eigen values for a particle trapped in this potential well of infinite depth.

QUESTION FOUR [15 marks]

a. Using the basis vectors of S_z , eigenvectors, calculate

- i. Si|+l/2> and [5marks] ii. Si|-l/2> (i = X, y, z). where |+1/2> and |-l/2> are the eigenvectors of S_z, with eigenvalues +h/2 and -h/2, respectively. [5marks]
- b. Determine the commutator of the following operators [x, p] [5marks]

END//