MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS
2023/2024 ACADEMIC YEAR
THIRD YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTHY
SCIENCES

BACHELOR OF SCIENCE(PHYSICS) AND
BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 3221-1
COURSE TITLE: Quantum Mechanics

DATE: 28/5/24 TIME: 8.30AM - 10.30AM

INSTRUCTIONS TO CANDIDATES

¢ Question One is Compulsory

e Answer Any Other Two Questions
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QUESTION ONE(20 Marks)

a. State three properties of Matter waves (3marks)

b. What is Quantum Mechanics? (Imarks)

c. Give three characteristics of a well behaved wave function ¥(x) (3marks)
pZ

d. Given the wave function ¥(x) is given by ¥ = e!**~®D show that E = o using the energy
operator. Where E is the energy, p is the momentum , m is the mass of the electron, w is the

angular frequency (3marks)
g. Verify that momentum Operator p acting on the wave function P(x, t) for a particle of
momentum p it gives p times the wave function ¥(x, t) , given as (3marks)
Py =py
i. Explain how Compton effect disagrees with photoelectric effect. (2 marks)

j. Calculate the de Broglie wavelength for an electron (me = 9.11 X 107! kg) moving at 1.00 x
107 m/s. (2 marks)

k. (i) State the Heisenberg uncertainty principle (1 marks)

(i) The speed of an electron is measured to be 5.00 X 10° m/s to an accuracy of 0.003 00%.
Find the minimum uncertainty in determining the position of this electron. (2marks)

QUESTION TWO [15 marks]

In quantum mechanics, the total energy, the kinetic energy, and the momentum are expressed in
terms of differential operators. The wave function is described by the function
P = e!kx=@)- Gjyen that p=hk and E=ho ,

i. showthatE = ih% , [3marks]

. hZ d2

ii. K.E=—-—— and [3marks]
2mdx

an=—m% [4marks]

iv. Derive the Schrodinger equation using equation (i) results. [5marks]



QUESTION THREE [15 Marks]

A particle moving freely in one-dimensional “box” of length ‘L’ trapped completely within the
box is imagined to be as a particle in a potential well of infinite depth. As shown in the figure
below

uplo= = = «
.

Initial conditions
V(x)=0;0<x<L

VxX)=w;x<0,x>L

Determine an expression for the energy Eigen values for a particle trapped in this potential well
of infinite depth.

QUESTION FOUR [15 marks]

a. Using the basis vectors of S, eigenvectors, calculate

i. Si|+l/2>and [5marks]
ii. Si|-1/2> (i = X, y, z). where [+1/2> and |-1/2> are the eigenvectors of S,, with eigenvalues
+h/2 and -h/2, respectively. [5marks]
b. Determine the commutator of the following operators [X, p] [5marks]
END//



