

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 2214-1

COURSE TITLE: CLASSICAL MECHANICS

DATE: TH APRIL 2024

TIME: HRS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Question one carries 20 marks while each of the others carries 15 marks.
- 3. Credit will be awarded for clear explanations and illustrations.

This paper consists of **3** printed pages. Please turn over.

<u>QUESTION ONE (</u>20marks)

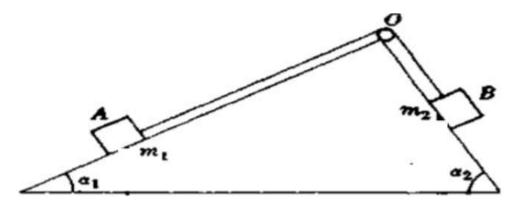
a)	What are cyclic coordinates	(2marks)
b)) Determine the number of degrees of freedom for a rigid body which	
	moves parallel to a fixed to plane.	(1mark)

- c) Classify each of the following according as they are ;(a)Holonomic and non holonomic constraints;(b) Rhenomic and scleronomic constraints
- i. A sphere rolling down from top of a fixed sphere
- ii. A particle moving on a very long frictionless wire which rotates with a constant angular speed about a horizontal axis (4marks)
- d) Set up Lagrangian for a simple pendulum and obtain an equation describing its motion. (6marks)
- e) Let r'_v and v'_v be respectively the position vector and velocity of particle v relative to the center of mass. prove that $\sum_v m_v r'_v = 0$ (4marks)
- f) Prove that the transformation **Q**=**p** and **P**=-**q** is canonical (3marks)

QUESTION TWO(15marks)

a)	State Hamilton's principle	(2marks)
b)	A particle moves in the xy plane under the influence of a cent	ral force
	depending only on its distance from the origin.	

i.	Set up the Hamiltonian for the system	(3marks)
ii.	Write Hamilton's equations of motion	(5marks)


c) Show that for a single particle with constant mass the equation of motion implies the following differential equation for kinetic energy: $\frac{d\mathbf{T}}{dt} = \mathbf{F} \cdot \mathbf{v}$, while if the mass varies with time the corresponding equation is $\frac{d(mT)}{dt} = \mathbf{F} \cdot \mathbf{p}$ (5marks)

<u>QUESTION THREE(</u>15marks)

a)	Differentiate between conservative forces and non-conservative forces		
		(2marks)	
b)	State advantages of variation principles formulation	(3marks)	
c)	A particle of mass 2kg moves in a force field depending on time t given		
	by $F = 24t^2 i + (36t - 16)j - 12tk$. Assuming that at $t =$	= 0, the particle is	
	located $\mathbf{r}_o = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ and has velocity $\mathbf{v}_o = 6\mathbf{i} + 15\mathbf{j} - 8\mathbf{k}$. Find:		
	i. The velocity	(3marks)	
	ii. The position	(3marks)	
	iii. The torque about the origin at any time t	(4marks)	

QUESTION FOUR (15marks)

- a) State D'Alembert's principle (3marks)
- b) Two particles of masses m₁ and m₂ are located on a frictionless double incline and connected by an inextensible massless string passing over a smooth peg as shown in the figure below.

i. Use the principle of virtual work to show that for equilibrium we must have $\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{m_1}{m_2}$ where α_1 and α_2 are the angles of the incline.

(4marks)

- ii. A system of particles will be in stable equilibrium if the potential V is
minimum. Show the above system is not stable(3marks)
- iii. Use D'Alembert's principle to describe the motion of masses

(5marks)