

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTHY SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION

COURSE CODE: PHY 2211-1

COURSE TITLE: OSCILLATIONS AND WAVES

DATE: April 2024

TIME: 2HOURS

INSTRUCTIONS TO CANDIDATES

- Question One is Compulsory
- Answer Any Other Two

This paper consists of five printed pages. Please turn over.

Question one [20 Marks]

(a) Solve the differential equation $\ddot{x} + x = 2\dot{x}$ with the initial conditions $x(0) =$ (b) An up demped system consists of a mass weighing 50N and a spring of	[4marks]
(b) An un damped system consists of a mass weighing 50N and a spring of stiffness 4000 Nm-1. It is acted upon by a harmonic force of amplitude 60N and a	
frequency of 6 Hz. Find:	
i. The displacement of the spring due to the weight of the mass	[2marks]
ii. The static displacement of the spring due to the maximum applied force iii. The amplitude of the forced motion of the mass.	[3marks]
(c) Differentiate between interference and beat as used in waves and oscillation	
	[2marks]
(d) Define the following terms	
i Angular frequency	[2marks]
ii. Amplitude of a wave	[2marks]
(e) A pendulum is observed to complete 23 full cycles in 58 seconds. Determine:	
i. The period and	[3marks]
ii. The frequency of the pendulum	[2marks]
(f) Which would have the highest frequency of vibration?	
Pendulum A: A 200 g mass attached to a 1.0 m length string	
Pendulum B: A 400 g mass attached to a 0.5 m length string	[3marks]
QUESTION TWO [15 MARKS]	
(a) Consider a spring mass system. Let it be driven by a harmonic force F(t). Show that:	
i the particular solution, x_P is given as $x_p = X \sin \omega t$	[4marks]

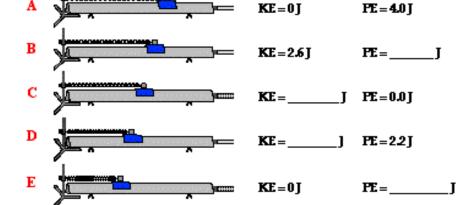
ii the amplitude ratio is given as

$$\frac{\mathbf{X}}{\boldsymbol{\delta}_{st}} = \frac{1}{\left(1 - \frac{\boldsymbol{\omega}^2}{\boldsymbol{\omega}_n^2}\right)}$$

iii state the equation when the amplitude ratio is

[4marks]

(I) positive


(b). State the law of conservation of energy

(c) What do you understand by the term periodic motion as used in waves? [1marks]

(d) A pendulum is observed to complete 23 full cycles in 58 seconds. Determine its period. [3marks]

QUESTION THREE [15 MARKS]

(a) Use energy conservation to fill in the blanks in the following diagram. [4marks]

(b) State and explain three properties of waves

- (c) Nina wishes to make a simple pendulum that serves as a timing device. She plans to make it such that its period is 1.00 second. What length must the pendulum have? [4marks]
- (d) Define the term doppler effects

QUESTION FOUR [15 MARKS]

- (a) A string vibrates according to the equation $y(x,t) = 0.5 \sin\left(\frac{\pi x}{3}\right) \cos 40\pi t$ where x and y are in centimetres and t is in seconds. i. What are the amplitude? [4marks]
 - ii. and velocity of the component waves whose superposition can give rise to this vibration? [3marks]
 - iii. What is the distance between nodes? [3marks]

[1marks]

[1marks]

[2marks]

[6marks]

- (b) A force of 16 N is required to stretch a spring a distance of 40 cm from its rest position. What force (in Newtons) is required to stretch the same spring (i) Twice the distance? [2marks]
 - (ii) One-half the distance?

[2marks]

(c) State the relationship between frequency and period of a simple harmonic motion. [1marks]