

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 1208-1

COURSE TITLE: GEOMETRIC OPTICS

DATE: 16/5/ 2024 TIME: 1100-1300 HRS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Question one carries 20 marks while each of the others carries 15 marks.
- 3. Credit will be awarded for clear explanations and illustrations.

Speed of light in vacuum = 3.0×10^8 m/s Index of refraction of air = 1.00Index of refraction of crown glass = 1.52Index of refraction of water = 1.33

QUESTION ONE

- a) Explain the dual nature of light (2marks)
- b) State two conditions for total internal reflection to occur. (2marks)
- c) Two thin converging lenses of focal lengths f_1 =10.0cm, and f_2 =20.0cm are separated by 20.0cm. An object is placed 30.0cm to the left of lens 1 (of f1=10.0cm). Find the position and the magnification of the final image.

(5marks)

d) Construct a ray diagram to correct a person with farsightedness

(4marks)

- e) A small fish is at a depth **d** below the surface of a pond. what is the apparent depth of the fish as viewed directly overhead from the surface of a pond (3marks)
- f) A converging glass lens of index of refraction n=1.52, has a focal length of 40.0 cm in air. Find its focal length when it is immersed in water. (4marks) *OUESTION TWO*
- a) State two laws of reflection of light

(2marks)

- b) Two mirrors make an angle of 120° with each other. A ray is incident on mirror M_1 at an angle of 65° to the normal. Find the direction of the ray after it is reflected from mirror M_2 . (4marks)
- c) Construct a ray diagram to find the image distance and its description for and object placed 30.0 cm in front of a converging lens of focal length 10.0 cm (5marks)
- d) Distinguish between chromatic aberration and spherical aberration in lenses.

(4marks))

QUESTION THREE

a) State the Snell's laws of refraction of light.

(2marks)

- b) State any three characteristics of image formed by a plane mirror (3marks)
- c) A light of wavelength 589nm travels through air is incident on a smooth flat slab of crown glass at an angle of 30.0° to the normal. Find the angle of refraction.

(3marks)

d) I. State Fermat's principle

(1mark)

ii. Use Fermat's principle to derive the Snell's law of refraction

(6marks)

QUESTION FOUR

a) Distinguish between a real image and a virtual image

(2marks)

- b) Explain the observation that when light passes from a material with index of refraction 1.3 into one with index of refraction 1.2 bends away the normal (2marks)
- c) By calculation, determine the location and describe the image form by an object placed at 5.00cm from a spherical mirror whose focal length is +10.0 cm. (5marks)
- d) Explain why it is difficult to see while driving on a rainy night (2marks)
- e) With aid of diagram explain the light dispersion on a prism (4marks) //END//