

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

DEGREE OF BACHELOR OF EDUCATION (SCIENCE) AND BACHELOR OF SCIENCE

COURSE CODE: PHY 1207-1

COURSE TITLE: MODERN PHYSICS

DATE: 15/5/2024 INSTRUCTIONS

TIME: 1100-1300 HRS

- Answer Question ONE and any other TWO.
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

PHYSICAL CONSTANTS

- Planck constant ; $h = 6.626 \times 10^{-34} Js$
- Charge of proton; $e = +1.602 \times 10^{-19} C$
- Mass of electron; $m_e = 9.109 \times 10^{-31} \text{kg}$
- \circ Acceleration due to gravity, g = 9.81 m s⁻²
- Avogadro constant; $N_A = 6.023 \times 10^{23} \text{mol}^{-1}$
- Stefan constant ; $\sigma = 5.670 \times 10^{-8} Wm^{-2} K^{-4}$
- \circ Rydberg constant; R_{hc} = 1.097x10⁷m⁻¹
- Speed of light in vacuum; $c = 2.998 \times 10^8 \text{ms}^{-1}$
- Charge of electron; $e = -1.602 \times 10^{-19} C$
- \circ Mass of proton; $m_p = 1.67 \times 10^{-27} \text{kg}$
- \circ Rest energy of electron; $E_e = 0.511 MeV$
- One atomic mass unit; $u = 1.66 \times 10^{-27} \text{kg}$
- \circ Atomic mass unit energy equivalent ; a.m.u = 931.5MeV
- One ElectronVolt ; $1eV = 1.602 \times 10^{-19} \text{ J}$

QUESTION ONE: [20 marks]

- a) Electrons are emitted from the surface in photoelectric effect is almost instantaneously, even at low intensities. Explain. [2]
- b) State the second postulate of Special relativity theory as postulated by Einstein in 1905. [2]
- c) State Wein's law of black body radiation.
- d) Photons of light have zero mass but possess momentum. Explain. [2]
- e) The Balmer series for the hydrogen atom corresponds to electronic transitions that terminate in the state of quantum number n = 2.

[3]

- (i) Find the longest-wavelength photon emitted and determine its energy [4]
- (ii) Find the shortest-wavelength photon emitted in the Balmer series. [3]
- f) State the physical meaning of the square of the wave function as postulated by Born [2]
- g) Determine energy of the photons in a 1240 nm infrared light beam in eV. [2]

QUESTION TWO: [15 marks]

- a) State the de Broglie postulate [2]
- b) X-rays of wavelength λ = 0.200 nm are aimed at a block of carbon. The scattered x-rays are observed at an angle of 45.0° to the incident beam. Calculate the increased wavelength of the scattered x-rays at this angle. [5]
- c) Why are x-ray photons used in the Compton experiment, rather than visible-light photons? To answer this question, we shall first calculate the Compton shift for scattering at 90° from graphite for the following cases:
 - (i) Very high energy γ -rays from cobalt, $\lambda = 0.0106$ Å;
 - (ii) x-rays from molybdenum, $\lambda = 0.712$ Å; and
 - (iii) green light from a mercury lamp, $\lambda = 5461$ Å. [5]
- d) The so-called free electrons in carbon are actually electrons with a binding energy of about 4 eV. Why may this binding energy be ignored for x-rays with $\lambda_0 = 0.712$ Å? [3]

QUESTION THREE: [20 marks]

- a) State the THREE postulates of Bohr. [3]
- b) From the concept of conservation of energy and quantization of angular momentum in the Bohr's model of a Hydrogen atom, show that $E = \frac{mk^2 e^4}{2n^2 \hbar^2}$ and calculate the Bohr radius and the corresponding energy of the first excited state for hydrogen. [12]

QUESTION FOUR: [15 marks]

- a. Briefly explain the Planck's law of black body radiation
- b. State two applications of the study of black body.
- c. Discuss the Rayleigh-Jeans Law of black body radiation. [5]
- d. Explain the Ultraviolet catastrophe [6]

QUESTION FIVE: [15 marks]

- a) Explain the term 'nuclear fission'
- b) Define the term atomic mass unit (*u*), and show that $1 \text{ amu} = 1.49 \text{ x } 10^{-10} \text{ J}.$ [3]
- c) Calculate the binding energy (in MeV) of an alpha particle from the following information: (ans. to 1 d.p.). Take Mass of a proton = 1.0076 u ; Mass of a neutron = 1.0090 u ; Mass of an alpha particle = 4.0028 u [5]

[2]

[2]

[2]

d) Consider the nuclear fusion below and determine the energy released per fusion.[5] ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + Energy.$

Element	Atomic Mass (kg)
2 ₁ H	3.345 x 10 ⁻²⁷
3 ₁ H	5.008 x 10 ⁻²⁷
⁴ ₂ He	6.647 x 10 ⁻²⁷
$1 0^n$	$1.6750 \ge 10^{-27}$

Calculate the following: (i) The mass difference (ii) The energy released per fusion.

//END//