

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2023/2024 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

MASTER OF SCIENCE EXAMINATION

COURSE CODE: MAT 8111

COURSE TITLE: GROUP THEORY

DATE:

TIME: 3 Hours

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **TWO** questions

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE – 30 MARKS

- a) Define a composition series and hence show that the group of integers Z has no composition series.
 (3 Marks)
- **b**) Find a finite abelian group which is isomorphic to each of the following direct product of cyclic groups of prime power order:

i)
$$\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

ii) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ (2 Marks)

- c) State and prove the Jordan-Holder theorem. (4 Marks)
- **d**) Given that $K \triangleleft G$, prove that G acts on K as a group by $k^g = g^{-1}kg \quad \forall k \in K$ and $g \in G$
- (5 Marks)
 (2 Marks)
 (2 Marks)
 (3 Marks)
 (3 Marks)
 (4 Marks)
 (5 Marks)
 (5 Marks)
 (6 Marks)
 - **f**) Given that *H* and *K* are groups, show that $\forall h, h' \in H$ and $\forall k, k' \in K$,
 - i) $H \times K$ is a group (5 Marks)
 - ii) $H \times K \cong K \times H$ (3 Marks)

QUESTION TW0 – 15 MARKS

- a) State the fundamental theorem of finitely generated abelian groups. (2 Marks)
- **b**) Given that *H* and *K* are groups and *H* acts on *K*, show that the set of all ordered (h,k)with $h \in H$, $k \in K$ acquires the structure of a group by $(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2)$ $\forall h_1, h_2 \in H$ and $\forall k_1, k_2 \in K$. (6 Marks)
- c) If m is a square free integer, then prove that every abelian group of order m is cyclic.

(3 Marks)

d) Find all abelian groups of order 360 up to isomorphism. (4 Marks)

QUESTION THREE – 15 MARKS

- a) i) Differentiate between external direct product and internal direct product. (2 Marks)
 ii) Prove that the external direct product of *H* and *K* is abelian if and only if *H* and *K* are abelian groups. (5 Marks)
- **b**) Find the order of (4,8) in $\mathbb{Z}_6 \times \mathbb{Z}_{10}$. (3 Marks)
- c) Let *n* and *m* be relatively prime. Show that $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{nm}$. (5 Marks)

QUESTION FOUR – 15 MARKS

a)	i) Define a soluble group.	(1 Mark)
	ii) Prove that a finite group G is soluble if it contains a normal subgroup	K such that K
	and G/K are soluble.	(5 Marks)
b)	Construct an ascending series of a group G .	(4 Marks)
c)	Define a p - group and hence show that every p -group is nilpotent.	(5 Marks)
