

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE (INDUSTRIAL MICROBIOLOGY)

COURSE CODE: MIC 4216 COURSE TITLE: TECHNIQUES IN MOLECULAR BIOLOGY

DATE: 18/4/2024

TIME: 1100-1300 HRS

INSTRUCTIONS

Answer All questions in Section A and ANY TWO in Section B

Illustrate your answers with suitable diagrams and give appropriate examples wherever necessary

SECTION A: ANSWER ALL QUESTIONS (30MKS)

1. State the contributions of the following in Molecular Bio	logy. (3mks)
i) Kary Mullis	(1mk)
ii) Hershy and Chase	(1mk)
iii) Watson and Crick	(1mk)
2. Distinguish the following terminologies as used in techn	iques in
molecular biology:	(3mks)
i) Cloning and expression vectors	(1mk)
ii) Southern and northern blotting	(1mk)
iii) Enhancers and promoters	(1mk)
3. Define the following terminologies as used in molecular	biology:(3mks)
i) Vector (0.5mk)	
ii) Palindrome (0.5mk)	
iii) Restriction enzymes (0.5mk)	
iv) Central dogma of molecular biology(1mk)	
v) Primer (0.5mk)	_
4. Explain in what ways chromosomal DNA replication in	
differ from DNA replication in prokaryotes.	(3mks)
5. Outline the applications of oligonucleotides.	(3mks)
6. Explain the principal of DNA extraction.	(3mks)
7. Describe the various phases of monoclonal antibodies p	
	(3mks)
8. Illustrate thymine dimer excision repair mechanism.	(3mks)
9. State the functions of protein microarrays.	(3mks)
10. In the following statements indicate the enzyme th	•
each of the steps in the semiconservative replication of	
prokaryotes.	(3mks)
a) The formation of negative supercoiling in progeny I	
b) The court acid of DNA primers	(0.5mk)
b) The synthesis of RNA primers	(0.5mk)
c) The removal of RNA primers	(0.5mk)
d) The covalent extension of DNA chains at the 3'-OH t	
primer strands	(0.5mk)
e) Proofreading of the nucleotides at the3'-OH termini	-
strands	(0.5mk)
f) Joining of the okazaki fragments	(0.5mk)

SECTION B: ANSWER ANY TWO QUESTIONS (40MKS)

- 11. Assuming you are the Kenyan government pathologist, how would you identify the exhumed bodies in the Shaka Hola saga using techniques in molecular biology? (20mks)
- 12. Give a detailed account of the methods of DNA sequencing.

(20mks)

- 13. Describe the process of cloning a DNA fragment into the *PSt I* site of the vector **pBR 322**. How would you screen for clones that contain the insert? (20mks)
- 14. Present, with examples controversial issues in biotechnology. (20mks)

//END//