

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/24 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE

COURSE CODE: MAT 4238-1

COURSE TITLE: TOPOLOGY II

DATE: 18/4/2024

TIME: 1100-1300 HRS

INSTRUCTIONS TO CANDIDATES

- Question One is Compulsory
- Answer Any Other two

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE (20 MARKS)

a)	Prove that a topological space X is a T_1 space if and only if every singleton		
	subset of X is closed.	(4 marks)	
b)	Show that every subspace of a Hausdorff space is Hausdorff.	(4 marks)	
c)	State Urysohn's lemma, hence prove that its converse is also true.	(5 marks)	
d)	Prove that every metric space is first countable.	(3 marks)	
e)	Show that the discrete space X is separable if X is countable.	(4 marks)	

QUESTION TWO (15 MARKS)

a)	Show that continuous image of a path-connected set is path connected.	(6 marks)	
b)	Define a separable space, hence show that the set X with cofinite topology		
	is separable any open subspace of a separable.	(5 marks)	
c)	Define homotopy hence show that the following continuous functions		
	where R is a space of real numbers with standard topology are always		
	homotopic.		

$$f: X \to \mathbb{R}$$

$$g: X \to \mathbb{R}$$
(4 marks)

QUESTION THREE (15 MARKS)

a)	Show	that every T_1 space is a T_0 space.	(4 marks)		
b)	Show	that a completely regular space is a regular space	(5 marks)		
c)	Define compactness, hence show that;				
	i.	Indiscrete space is compact.			
	ii.	The set R with the usual topology is locally compact but not			
		compact.	(6 marks)		

QUESTION FOUR (15 MARKS)

a)	Prove that any topological space homeomorphic to a connected space is		
	connected.	(6 marks)	
b)) Show that the subspace (Y, τ_Y) of the second countable space (X, τ) is also		
	second countable.	(3 marks)	
c)	Define total disconnectedness hence show that the space X with discrete		
	topology is totally disconnected and locally connected	(6 marks)	

//END//