

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER SCHOOL OF PURE APPLIED AND HEALTH SCIENCES THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

MAT 3227-1:RINGS AND MODULES

Instructions to candidates: Answer Question 1. And any other TWO. All Symbols have their usual meaning

DATE: TIME:

Question 1(20 Marks)

(a) Define a ring	$(3 \mathbf{Marks})$	
(b) Give an example of a non-commutative ring	(1 Mark)	
(c) Let R be the ring of 2×2 matrices over Z. Let $A = \begin{bmatrix} 2 & 1' \\ 0 & 0' \\ 0 & 0' \end{bmatrix}$ non-zero element B in R such that $AB = 0$, the zero matrix. S are infinitely many elements X in R such that $AX = 0$		
 (d) i Give the definition of a two sided ideal of a ring R ii Prove that 3Z (all multiples of 3) is an ideal of Z iii Exhibit four more ideals of Z 	(2 Marks)(2 Marks)(2 Marks)	
(e) Let R be a ring. Explain the meaning of the statement M is a R-module	(2 Marks)	
(f) Give an example of a \mathbb{Z} -module	(1 Mark)	
(g) Give the definition of a Euclidean ring	$(2 \mathbf{Marks})$	
(h) Give two examples of a Euclidean ring	$(2 \ \mathbf{Marks})$	
Question 2 (15 Marks)		
(a) Prove that every ideal of a Euclidean ring is generated by one element	$(5 \mathbf{Marks})$	
(b) Determine the generator(s) of the following		
i the ideal $15\mathbb{Z} + 27\mathbb{Z}$ of the ring \mathbb{Z}	$(2 \ \mathbf{Marks})$	
ii the ideal $15\mathbb{Z} \cap 27\mathbb{Z}$ of the ring \mathbb{Z}	$(2 \ \mathbf{Marks})$	
iii the ideal $3\mathbb{Z} + 4\mathbb{Z}$	$(2 \mathbf{Marks})$	

(c) Draw a lattice diagram showing the relationship between the ideals
6Z, 17Z,18Z, 4Z, 8Z (and Z)
(6 Marks)

Question 3 (15 Marks)

Let M be the Abelian additive group of 3×2 matrices over \mathbb{Z}

(a) Write down three distinct elements of M
(1 Mark)
(b) Show that M is an R-module where R is the ring of 2 × 2 matrices over Z
(3 Marks)
(c) State whether M is a left or a right R-module
(1 Mark)
(d) List 5 different non-zero R-submodules of M
(5 Marks)
(e) Show that there are infinitely many R-submodules of M
(3 Marks)
(f) Determine three submodules M₁, M₂, M₃ such that
(2 Marks)

$$0 \neq M_1 \underset{\neq}{\subset} M_2 \underset{\neq}{\subset} M_3 \underset{\neq}{\subset} M$$

Question 4 (15 Marks)

- (a) Give two examples of a commutative integral domain with identity (which is not a field). (2 Marks)
- (b) Give an example of a maximal ideal in each of the integral domains in (a) (2 Marks)
- (c) Prove that if I is a maximal ideal in a commutative integral domain with identity R then $\frac{R}{I}$ is a field (5 Marks)

(d) Exhibit a case where

(i) $\frac{R}{I}$ is an infinite countable filed	$(2 \ \mathbf{Marks})$
(ii) $\frac{R}{I}$ is an infinite uncountable field	$(2 \mathbf{Marks})$

(iii) $\frac{R}{I}$ has exactly 4 elements (2 Marks)