

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2023/2024 ACADEMIC YEAR

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS AND BACHELOR OF EDUCATION

MAT 3226-1: NUMERICAL ANALYSIS II

DATE:

TIME:

Duration: 2 Hours

INSTRUCTIONS

- 1. This paper contains **FOUR** (4) questions in two sections A and B.
- 2. Section A is compulsory
- 3. Answer question ONE (1) in section A and any Two (2) questions from section B.
- **4.** Do not forget to write your Registration Number.

SECTION A

QUESTION ONE

a) Use Gaussian elimination with pivoting to solve the equations

0.333x + 6.35y + 0.222z = 6.4441.545x + 1.727y + 2.636z = 5.4541.857x + 1.286y + 2.143z = 3.715

Make all the computations to 4dp

b) Verify that $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$ is a LU decomposition of a matrix A. Use the

decomposition to solve the equation

$$\mathbf{A}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$
(5 Marks)

c) Find the Taylor series solution of the differential equation

 $\frac{dy}{dx} = x^2 - y \qquad \qquad y(1) = 2$

upto the term x^5 . Hence compute y(1.1) to 4d.p

(5 Marks)

(6 Marks)

d) Find the least square line that best fit the data

x _i	-2	-1	0	1	2
<i>Y</i> _i	-4	-1	2	5	8

(4 Marks)

(15 marks)

SECTION B

QUESTION TWO

Use Gauss – Seidel iterative method to solve the equation.

 $x_1 + 2x_2 + 3x_3 - x_4 = 34$ $2x_1 + 15x_2 + x_3 - 3x_4 = 25$ $10x_1 + x_2 + x_3 + 2x_4 = 16$ $4x_1 + x_2 + 20x_3 + x_4 = 68$

Using $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = x_4^{(0)} = 0$. Perform your computations to 4d.p.

QUESTION THREE

Using $\mathbf{X}^{(0)} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ use the power method to get the dominant eigenvalue of the matrix

 $A = \begin{bmatrix} 1 & 5 & -8 \\ 5 & -2 & 5 \\ -8 & 5 & 1 \end{bmatrix}$ to the nearest whole numbers and the corresponding Eigen vector with

components whole numbers. Verify that $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$ is also an Eigen vector and state the corresponding Eigen value. Use an algebraic method to get the third Eigen value and the corresponding Eigen vector.

(15 marks)

QUESTION FOUR

Use the fourth order Runge – Kutta with 4 steps to find y(1) given

$$\frac{dy}{dx} + 2y = 4x$$
, $y(0) = 1$ to four decimal places. (15 marks)