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       INSTRUCTIONS TO CANDIDATES 

1. This paper contains FIVE (5) questions  

2. Answer question ONE (1) and any other TWO (2) questions  
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QUESTION ONE (20 MARKS) 

a) Distinguish between an onto mapping and a 1-1 mapping         (2 marks)  

b) Let G = {1, 2, 3, 4, 5, 6} under multiplication modulo 7.  

(i) Form the multiplication table for G          (2 marks)  

(ii) State the inverses 5 and 6             (1 marks)  

c) The operation and * are defined on such that   

xy =3x +4y  

x∗ y =2y − x  

Determine;  

(i) If the operations are associative            (2 marks)  

(ii) If the identity element under the operations exist for each operation  (3 marks)  

(iii) Show that is left distributive over *          (2 marks)  

d) Define a set                    (1 mark)  

e) Discuss the following terms as used in algebraic structures; 

i. Subgroup         (1 mark) 

ii. Abelian group        (1 mark) 

f) Express explicitly all the elements of the set;  

i.  A = {X: 1 ≤ x ≤ 12, x is odd}      (1 mark)  

ii. B = { y : y3 – 4y = 0}             (2 marks)  

g) Define the order of a group                (1 marks)  

h) Define a cyclic group.                (1 marks)  

QUESTION TWO (15 MARKS)  

a) Define a group                  (2 marks)  

b) Let G be the set of all real numbers except −1 i.e. 𝐺 =  {𝑅\{−1}}.  Define * on G by  

𝑎 ∗ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏.  

(i) Show that G is a subgroup under *            (5 marks)  

(ii) Is G an abelian group?              (5 marks)  

(iii) Solve the equation 2*3*x=7             (3 marks)  

 



Page | 3 

 

QUESTION THREE 1 (15 MARKS)  

a) Define an inverse mapping                (2 marks)  

b) Define a ring with its five addition axioms            (5 marks)  

c) Show that ℤ3 is a field while ℤ4 is not          (4 marks)  

d) Show that the operation * on ℤ define by 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 3   ∀ 𝑎, 𝑏 ∈  ℤ satisfies the closure 

and associativity properties                (4 marks) 

  

QUESTION FOUR ((15 MARKS)  

a) Let 𝑓: 𝑅 → 𝑅 be define be
 

 ( )
1

x
f x

x
=

+
 

(i) Find f (-5) and the domain of  f            (2 marks)  

(ii) Find f-1 and f-1(1)                (4 marks)  

(iii) Show that f is 1-1                (3 marks)  

b) Let 𝑓: ℤ → ℤ ,  𝑔: ℤ → ℤ be defined by  𝑓 ( 𝑥)  =  𝑥2 +  2𝑥 + 1and 𝑔(𝑥)  =  4𝑥 –  5.  Show that  

 gof ≠ fog                    (4 marks)  

c) The tables below are Cayley tables of the ring (R, +, •)  

 

+  a  b  c  d  e  f  g    

  

  

  

  

  

  

  

•  a  b  c  d  e  f  g  

a  e  a  d  g  f  c  b  a  f  b  d  a  g  e  c  

b  a  b  c  d  e  f  g  b  b  b  b  b  b  b  b  

c  d  c  a  e  g  b  f  c  d  b  c  c  f  a  e  

d  g  d  e  f  b  a  c  d  a  b  c  d  e  f  g  

e  f  e  g  b  c  d  a  e  g  b  e  e  d  c  a  

f  c  f  b  a  d  g  e  f  e  b  f  f  c  g  d  

g   b  g  f  c  a  e  d  g   c  b  g  g  a  d  f  

 

Determine the additive and multiplications identities     (2 marks) 
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QUESTION FIVE (15 MARKS) 
 

a) State Lagrange’s theorem on subgroups of a finite group and use the subgroups of 
i.  𝑍12 

ii.  S3 

to illustrate         (4 marks) 

(i) Let G = {1, -1, I, -i} and H = {1, -1}.  Is (H, •) a subgroup of (G, •)? (3 marks) 

(ii) What is a left coset of H in G?       (2 marks) 

(iii) Find all the disjoint cosets of H in G from b(ii) above   (2 marks) 

(iv) Give the definition of a field and hence state the examples of field with an infinite number of 

elements.          (4 marks) 

 

 


