

MAASAI MARA UNIVERSITY MAIN EXAMINATION 2024/2025 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

MAT 2215: INTRODUCTION TO ALGEBRAIC STRUCTURES

DATE: APRIL, 2024

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains FIVE (5) questions
- 2. Answer question ONE (1) and any other TWO (2) questions
- 3. Do not forget to write your Registration Number.

QUESTION ONE (20 MARKS)

a)	Distingu	ish between an onto mapping and a 1-1 mapping	(2 marks)							
b)	Let G =	$\{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.								
	(i	i) Form the multiplication table for G	(2 marks)							
	(1	ii) State the inverses 5 and 6	(1 marks)							
c)	The open	ration oand * are defined on such that								
		$x \circ y = 3x + 4y$								
		$x \star y = 2y - x$								
	Determin	ne;								
	(i) I	f the operations are associative	(2 marks)							
	(ii) I	f the identity element under the operations exist for each operation	(3 marks)							
	(iii) S	Show that ois left distributive over *	(2 marks)							
d)	Define a	set	(1 mark)							
e)	Discuss	the following terms as used in algebraic structures;								
	i. ii	8 1	(1 mark) (1 mark)							
f)	Express	explicitly all the elements of the set;								
	i	. $A = \{X: 1 \le x \le 12, x \text{ is odd}\}$	(1 mark)							
	i	i. $B = \{ y : y^3 - 4y = 0 \}$	(2 marks)							
g)	Define the	(1 marks)								
h)	Define a	cyclic group.	(1 marks)							
QUES	TION TV	WO (15 MARKS)								
a)	Define a	group	(2 marks)							
b)	Let G be the set of all real numbers except -1 i.e. $G = \{R \setminus \{-1\}\}$. Define * on									
	a * b = a + b - ab.									
	(i) S	(5 marks)								
	(ii) I	s G an abelian group?	(5 marks)							
	(iii) S	Solve the equation $2*3*x=7$	(3 marks)							

QUESTION THREE 1 (15 MARKS)

a)	Define an inverse mapping	(2 marks)
b)	Define a ring with its five addition axioms	(5 marks)
c)	Show that \mathbb{Z}_3 is a field while \mathbb{Z}_4 is not	(4 marks)

d) Show that the operation * on \mathbb{Z} define by $a * b = a + b + 3 \quad \forall a, b \in \mathbb{Z}$ satisfies the closure and associativity properties (4 marks)

QUESTION FOUR ((15 MARKS)

a) Let $f: R \to R$ be define be $f(x) = \frac{x}{x+1}$ (i) Find f(-5) and the domain of f (2 marks) (ii) Find f^1 and $f^1(1)$ (4 marks) (iii) Show that f is 1-1 (3 marks)

b) Let $f: \mathbb{Z} \to \mathbb{Z}$, $g: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = x^2 + 2x + 1$ and g(x) = 4x - 5. Show that $gof \neq fog$ (4 marks)

c) The tables below are Cayley tables of the ring $(R, +, \bullet)$

+	a	b	c	d	e	f	g	•	a	b	c	d	e	f	g
a	e	a	d	g	f	c	b	a	f	b	d	а	g	e	c
b	a	b	c	d	e	f	g	b	b	b	b	b	b	b	b
c	d	c	a	e	g	b	f	c	d	b	с	с	f	a	e
d	g	d	e	f	b	a	c	d	а	b	с	d	e	f	g
e	f	e	g	b	c	d	a	e	g	b	e	e	d	c	а
f	c	f	b	a	d	g	e	f	e	b	f	f	с	g	d
g	b	g	f	c	а	e	d	g	с	b	g	g	a	d	f

Determine the additive and multiplications identities

(2 marks)

QUESTION FIVE (15 MARKS)

- a) State Lagrange's theorem on subgroups of a finite group and use the subgroups of
 - Z_{12} i. S_3 ii.

to illustrate

- (4 marks)
- (i) Let $G = \{1, -1, I, -i\}$ and $H = \{1, -1\}$. Is (H, \bullet) a subgroup of (G, \bullet) ? (3 marks) (2 marks)
- What is a left coset of H in G? (ii) (iii)
 - Find all the disjoint cosets of H in G from b(ii) above (2 marks)
- Give the definition of a field and hence state the examples of field with an infinite number of (iv) elements. (4 marks)