

MAASAI MARA UNIVERSITY

UNIVERSITY EXAMINATIONS 2023/2024 (REGULAR) YEAR ONE SEMESTER TWO

SCHOOL OF SCIENCE AND INFORMATION SCIENCES

UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: COM 1209-1

COURSE TITLE: DISCRETE STRUCTURE

DATE: 17/5/24 INSTRUCTIONS

TIME: 1100-1300HRS

• Answer Question ONE and any other TWO

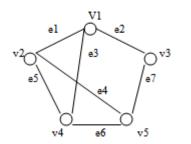
SECTION – A QUESTION ONE (COMPULSORY 30 MARKS) a) Draw the graph with the following adjacency matrix. a b c $da \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ c & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$	(2 Marks)
b) Rewrite the following statements using set notation:	
(i) the element 1 is not a member of A	
(ii) A is a subset of B	(2 Marks)
c) Simplify $\frac{(n+1)!}{(n-1)!}$	(4 Marks)
d) Construct logic networks for the following Boolean expre- using AND gates, OR gates, and inverters. $(\bar{x} + y)z$ e) A group consists of nine men and six women. Find the num committees of six that can be selected from the class. f) The relation R on a set is represented by	(3 Marks) mber m of (2 Marks)
$M_{R} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ is R reflexive, symmetric or antisymmetric?	(2 Marks)
g) Draw the complete bipartite graphs K _{2,3}	(2 Marks)
h) Draw the relation graph for the following relations (i) R = {(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1)} or {1,2,3,4}	n the set X=
(ii) $S = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ on the set $Y =$	{1,2,3} (4 Marks)
 i) Determine which of the following sets are finite. (i) A= {seasons in the year} (ii) B= {state in the union} 	
 (ii) D= {state in the union} (iii) C= {+ve integers less than 1} j) Use a K-map to find the minimal form for each of the follow complete sum-of-products Boolean expressions and draw th circuit diagram. 	0
$E_1 = ABC + ABC + ABC + \overline{ABC} + \overline{ABC} + \overline{ABC}$	(6 Marks)

SECTION - B: QUESTION TWO (20 MARKS) a) Consider the following sets:

- (I) $X = \{x: x \text{ is an integer, } x > 1\}$
- (II) Y= {y: y is an positive integer, divisible by 2}

(III) Z= {z: z is an even number, greater than 2} Which of them are subset of w = {2, 4, 6......}? (3 Marks) b) Determine the power set P (A) of A= {1, 3, 5} (4 Marks) c) Find the number of distinct permutations that can be formed from all the letters of each word "EXAMINATION" (2 Marks) d) Construct the truth table for $p \land (p \lor q)$ (4 Marks)

e) Suppose U= {1,2, 3.....8,9}, A= {1,2,3,4}, B= {2,4,6,8}, and C= {3,4,5,6}. Find


(i) $(A \cup B) \cup C$ and (ii) $A \cup (B \cup C)$ (4 Marks)

f) Determine which of the following sets are finite.

- (iii) A= {seasons in the year}
- (iii) B= {state in the union}
- (iii) C= {+ve integers less than 1} (3 Marks)

QUESTION THREE (20 MARKS)

a) Find the adjacency matrix A of the graph G in figure.

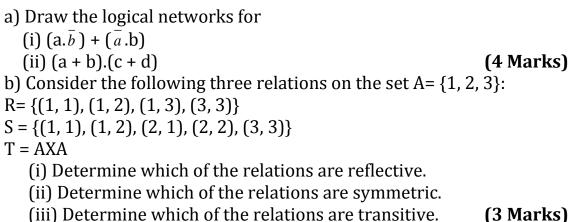
(4 Marks)

b) One hundred students were asked whether they had taken courses in any of the three areas, *Computer*, *Physics*, and *History*. The results were:

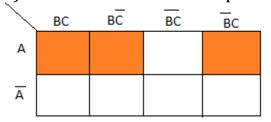
26 had taken *Computer*

- 22 had taken Physics
- 33 had taken *History*
- 6 had taken *Computer* and *Physics*
- 8 had taken *Computer* and *History*
- 5 had taken *History* and *Physics* and
- 2 had taken all the three courses.
 - I. Draw a Venn diagram that will show the results of the survey.

(3 Marks)


II. Determine the number of students who had taken exactly ONE of the courses. (1 Mark)

III.	Number	of St	udents	who ha	ad taken	exactly	TWO of	f the courses.
								(1 Mark)


IV. Number of Student who have taken NONE of the courses.

	(1 Mark)
c) Prove x + \overline{y} = x + (\overline{x} . \overline{y} + \overline{x} . \overline{y})	(2 Marks)
d) Prove that $x \oplus y = y \oplus x$	(3 Marks)
e) Draw all trees with five vertices	(5 Marks)

QUESTION FOUR (20 MARKS)

c) Find the minimal form expression of K-Map given below: -

(2 Marks)

d) Prove the associative law: $(p \land q) \land r \equiv p \land (q \land r)$ (4 Marks)

e) Draw the K-Map of the following expression. $Z = f(A,B,C) = ABC + A\overline{BC}$ + $\overline{A}\overline{B}\overline{C}$ + $AB\overline{C}$ (2 Marks)

f) Suppose the truth table of an expression is T = [A=00001111, B=

00110011, C= 01010101, L= 11101001

(i) Find out the Expression of given truth table.

(ii) Draw the K-Map and find the minimal form of this. (5 Marks)

//END