

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE CHEMISTRY AND BED SCIENCE END-OF-SEMESTER EXAMINATION

COURSE CODE: CHE 1207-1

COURSE TITLE: ADVANCED CHEMICAL BONDING

DATE:21/5/24

TIME: 1100-1300HRS

INSTRUCTIONS TO CANDIDATES

- Answer all questions in section A and two questions in section B
- 2. Do not write on the question paper
- 3. Use of mobile phones in the exam room is prohibited
- 4. **Constants:** Avogadro's number = 6.022×10^{23} , Electronic charge = 1.602×10^{-19} C, Permitivity of medium = 8.854×10^{-12} C²m⁻¹J⁻¹

Section A: Answer all questions Question one

a. Define the following terms.

4 marks

- i. Hybridization.
- ii. Bond order
- iii. Bond length
- iv. Electronegativity
- b. Write the resonance structure of:

3 marks

- i. CO_3^{-2}
- ii. SO_3
- iii. NO₂
- c. The octet rule states that atoms share electron pairs until they have acquired an octet of valence electrons.
 - i. Draw the Lewis structure of SO_4^{2-} .

2 marks

ii. Does S in SO_4^{2-} obey the octet rule?

1 mark

- iii. Calculate the formal charge of each atom in SF₆ **2 marks**
- iv. Explain your answer in (ii) above.

3 marks

- d. Calculation of lattice energy of NaCI using Born-Lande equation; A=1.748, r_0 = 0.281 nm, n=8, No Avogadro's number (6.022 x 10^{23}), e Electronic charge (1.602 x 10^{-19} C), ϵ_0 Permittivity (8.854 x 10^{-12} C²m⁻¹J⁻¹). **5 marks**
- e. What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one example of each type. **2 marks**
- f. Although geometries of NH_3 and H_2O molecules are distorted tetrahedral, the bond angle in water is less than that of ammonia. Discuss. **2 marks**
- g. Both CO_2 and H_2O are triatomic molecules, although the shape of H_2O molecule is bent while that of CO_2 is linear. Explain this based on the dipole moment. Hint dipole moment of $CO_2=0D$ while $H_2O=1.84D$.

4 marks

h. Discuss the essential conditions for the overlap of atomic orbitals.

2 marks

SECTION B, Answer Any two questions

Question 2

a. Discuss the mechanism of chemical bond formation. 3 marks.

b. Given the information below, answer the following with regards to the Born-Haber cycle

- i. Draw a diagram and explain five enthalpy change steps equivalent to the direct formation of NaCl.3 marks
- ii. Calculate the lattice energy for the formation of NaCl. **2 marks**
- iii. List the factors that affect the magnitude of the lattice energy in solids.

2 marks

Question 3

- a. Draw the molecular energy diagram of O_2 , O_2 and O_2 +. **6 marks**
 - i. Write the electron configuration in terms of bonding and anti-bonding molecular orbitals.1.5 marks
 - ii. calculate the bond order of O_2 , O_2 and O_2 +. **1.5 marks**
 - iii. Indicate the magnetic properties of O_2 , O_2 and O_2 +. 1 mark

Question 4

- a. Explain five limitations of the Valency Bond Theory. 5 marks
- b. Differentiate between bonding molecular orbitals and antibonding molecular orbitals. **3 marks**
- c. Explain two factors that favor the formation of ionic bonds. **2mks**

//END