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Abstract: Modeling extreme value theories is really gaining interest in the world with scientist working to improve the
flexibility of the distributions by adding parameter(s). Extreme value distributions are always described to include families of
Gumbel, Weibull and Frechet distributions. Of the three distributions, Gumbel distribution is the most commonly used in the
extreme value theory analysis. Existing literature has shown that the addition of parameter to a distribution makes it robust
and/or more flexible hence the study intends to improve the existing two parameters Gumbel distribution using the Marshall and
Olkin proposed method for introducing a new estimator/parameter to an existing distribution. The developed distribution will be
important to the applications in some life time studies like high temperature, earthquakes, network designs, horse racing, queues
in supermarket, insurance, winds, risk management, ozone concentration, flood, engineering and financial concepts. The
parameters for the introduced distribution was estimated using Maximum Likelihood Estimation method. The introduced three
parameters Gumbel distribution is a probability distribution function which can be used in modelling statistical data. The
maximum likelihood estimates for the three parameters namely shape, location and dispersion are efficient, sufficient and
consistent and this makes the function more flexible and better for application. The three parameters Gumbel distribution can be
used in modeling and analysis of normal data, skewed data and extreme data since it will provide efficient, sufficient and
consistent estimates.

Keywords: Gumbel Distribution, Maximum Likelihood Estimation, Marshall Olkins Method, Parameters,
Three Parameters Gumbel Distribution

1. Introduction
Extreme value analysis is a branch of statistics dealing

with the extreme deviations from the centre of probability
distribution and it focuses on limiting distributions which
are distinct from normal distribution. Extreme value studies
originated majorly from the experts in astronomy who focused
on analyzing the data observed from astronomical objects like
comets, planets, moons, stars etc. The early papers on the
extreme value theories focused both on methods of statistical
analysis and on the application of the formulated extreme value

distributions [3, 15].
Over past years, extreme value theory has indicated that

the world is gaining a better understanding of the statistical
modeling and analysis of the extreme value concepts. The
understanding of the behaviour of extreme event cases is
useful for understanding the whole behaviour of such cases
both under the ordinary and extra-ordinary circumstances.
Therefore,it is a mistake to separate the extreme events from
the other events when it comes to modeling and analysis[5, 11].

Today, extreme point distributions have developed as one of
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the key statistical area for applied sciences. Analyzing extreme
values therefore, requires parameter estimation and application
of the probability of events that are more extreme than the
previously experienced cases with the main goal of estimating
the future expectations [2, 19]. Extreme value analysis provide
a framework that assists for this type of research work that
deals with extreme data sets. Gumbel distribution is not only
widely used in various application in extreme value studies but
also referred as the mother to the extreme value distributions
(that is, Frechet and Weibull distribution types)[12, 19]. Not
many research have been published on the extensive study of
the Gumbel distribution even with its ability to fit data from
many different areas of the extreme value observation like
engineering, physics, climate among others.

In a statistical analysis Gumbel distribution, Exponential
Gumbel distribution and Generalized Extreme Value
distribution (three parameter Generalized Extreme Value
distribution) were applied on two types of data sets. The results
showed that Exponential Gumbel distribution could serve
as an alternative to Generalized Extreme Value distribution
because it gives narrower confidence intervals than the
Generalized Extreme Value distribution. It was also noted that
the Exponential Gumbel distribution produced the smallest
Anderson-Darling statistical value compared to the Gumbel
and Generalized Extreme Value distribution. This research
recommended further studies on estimation methodology
and analysis using Exponential Gumbel distribution [8, 12,
14]. This study also combined exponential and Gumbel
distribution, it did not add a parameter to the univariate
Gumbel distribution using Marshall Olkin proposed method.

Abdelaziz and Zoglat (2011), compared normal and Gumbel
distribution after arguing that they are much alike in practical
application in flood and engineering analysis. The researchers
used the ratio of the Restricted Maximized Likelihood
estimation as the test statistics under both normal and Gumbel
(two parameter)distributions. Using Monte Carlo simulation,
the probability of correct selection was compared with the
asymptotic distribution results of the test statistics under the
null hypothesis and it was found that ML can be used for
differentiating between any two distributions of the scale and
location parameter. This study showed Maximum Likelihood
is the best estimation method for discriminating two or more
distributions of the same family [1, 17]. This study compared
the normal and Gumbel distribution, it did not add a parameter
to the Gumbel distribution.

The research have found that adding a parameter to any
existing distribution makes it more flexible and important
for modeling and analyzing both simulated and real life data
sets. This is because the newly introduced parameters in a
distribution provides better estimates and makes it more robust
and/or efficient than the baseline distributions. However,
from the reviewed literature, it was realized that apart from
combining Gumbel distribution with other distributions like
exponential, gamma, geometric among others, no scholar
have modeled a three parameters Gumbel distribution. For
this study we wish to model a three parameters Gumbel
distribution about which we consider three parameters (that is,

shape, location and dispersion) using Marshall Olkin (1997)
proposed method. Since the extreme value analysis address the
extreme deviations from the centre of probability distribution
and it focus on limiting distributions which are distinct from
normal distribution. Extreme value distributions are always
viewed to include families of Gumbel, Frechet and Weibull
distributions. Of the three distributions, Gumbel distribution is
frequently used in the extreme value theory analysis because
majority of the authors refer to Gumbel distribution as the
mother to the extreme value distributions from the fact that
the Frechet and Weibull distributions can be transformed to
Gumbel distribution by applying a simple transformation.
Existing literature has shown that the addition of parameter
to a distribution makes it robust and/or more flexible hence the
study intends to improve the existing Gumbel distribution by
making it more flexible through addition of shape parameter
using Marshall and Olkin technique.

This research therefore intends to develop a new distribution
called a three parameters Gumbel distribution to improve the
flexibility of the already existing two parameter distribution.
The new distribution will be developed by applying the
Marshall Olkin method for adding a new parameter to an
existing distribution. To estimate a parameters of the three
parameters Gumbel distribution which we discuss in chapter
three, this study intends to apply Maximum Likelihood
Estimation method. This method of estimation was preferred
over the other methods like Method of moments, Ordinary
Least square, percentiles, Cramer-Von Mises etc because
[3, 6, 18, 20] provide enough evidence supporting Maximum
Likelihood Estimation as the best parameter estimation
method since it provides better estimates for both small and
large samples of data.

This research concentrates on three parameters namely;
the location parameter, dispersion parameter and the shape
parameter. The location parameter help in determining the
shift of the distribution under study and as well tells us where
the distribution is located/centered, the dispersion parameter
helps in describing how the distribution is scattered around the
center or simply how the distribution is spread and the shape
parameter guide us on the shape of the distribution depending
on the value of the shape parameter.

2. Methods

2.1. Marshall Olkin Method of Adding a Parameter

Marshall and Olkin (1997) proposed a procedure of
introducing a new parameter to an existing distribution. This is
because introducing a parameter to a well defined distribution
is an honored procedure in that it helps in introducing a more
flexible new family of the distribution for modeling various
data types [4, 16]. A new parameter for the main objective of
this study is to be added to the following baseline probability
distribution which is a two parameter distribution with ω
representing location of the variables and τ representing scale
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or dispersion parameter.

f(v) =
1

τ
exp
(
− v − ω

τ
− e−

v−ω
τ

)
(1)

where v ∈ < and ω > 0, τ > 0 are location and
dispersion/scale parameters respectively.

Marshall Olkin (1997) began with a parent survival function
F̄ (v) and considered a family of survival function given by:

S̄(v) =
δF̄ (v)

1− δ̄F̄ (v)
=

δF̄ (v)

F (v) + δF̄ (v)
,∞ < v <∞ (2)

where δ > 0, δ̄ = 1 − δ and F̄ (v) = 1 − F (v). For
δ = 1, S̄(v) = F̄ (v).

The two primary properties of the Marshall Olkin family
of distributions is that it has a stability property, that is if
the method is put in application twice it returns back to the
original distribution and the introduced distribution satisfies
the property of the geometric extreme stability [4].

After introducing the new distribution, the corresponding
cumulative distribution function (cdf) and probability density
function (pdf) are respectively obtained as given in the
following equations:

T (v) =
F (v)

1− δ̄F̄ (v)
(3)

and

t(v) =
δf(v)(

1− δ̄F̄ (v)

)2 (4)

2.2. Maximum Likelihood Estimation Method

This subsection discusses the method of Maximum
Likelihood Estimation which was used in this study for the
purpose of estimating parameters of the new three parameters
Gumbel distribution to be modeled. According to [13, 20],
maximum likelihood method can be used in many problems
since it has a strong instinctual appeal and it yield a better
estimator(s). This method of maximum likelihood is widely
put in application because it is more precise especially
when dealing with large samples since it yields a more
efficient estimator(s) when the sample is large. This is
an evidence from the literature review where we realized
that Maximum Likelihood Estimation method gives the best
parameter estimates compared to the other estimation methods
like Minimum Distance Estimation, Method of Moments etc.

According to [10], if supposing we have say Ẑ of P is a
solution to the maximization problem given as

Ẑ = argMaxLn(Z : v1, v2, ..., vk), (5)

where, v1, ..., vk represents the data observations, then under
suitable regularity conditions, where the first order condition

is given as

∂Ln

∂Z
(Z : v1, v2, ...vk) = −k +

1

Ẑ
(

k∑
i=1

Vi) (6)

These conditions are generally called the likelihood or log-
likelihood equations. The first derivative or gradient of a
condition (log-likelihood) which is solved at point Ẑ need to
satisfies the following equation

∂Ln(Z : v1, v2, ..., vk)

∂Z
=
∂Ln(Ẑ : v1, v2, ..., vk)

∂Z
= 0 (7)

The log-likelihood equation that coincide to linear or non-
linear system of P equations with P unknown parameters
Z1, Z2, ...ZP with K observations is given by

∂Ln(Z : v1, ..., vk)

∂Z
=

(
∂Ln(Z : v1, ..., vk)

∂Z1

)
= ..... =(

∂Ln(Z : v1, ..., vk)

∂ZP

)
= 0 (8)

Maximum Likelihood Estimation is a recommended
technique for many distributions because it uses the values
of the distribution parameters that makes the data more likely
than any other parameters. This is achieved by maximizing
the likelihood function of the parameters given the data. Some
good features of maximum likelihood estimators is that they
are asymptotically unbiased since the bias tends to zero as the
sample size increases and also they are asymptotically efficient
since they achieve the Cramer-Rao lower bound which states
that for any unbiased estimator of population parameter P
it gives a lower estimate for the variance of an unbiased
estimator, as sample size approaches ∞ and lastly they are
asymptotically normal [9, 10].

3. Model Formulation and Parameter
Estimation

3.1. Three Parameters Gumbel Distribution Formulation

The formulation of a three parameters Gumbel distribution
is done using Marshal Olkin method as given in equation (2).
Suppose we have a random variable V , then the cdf is given as
follows;
F̄ (v) = 1 − F (v) whereby F (v) =

∫ k
v=0

f(v)dv, where
f(v) is pdf of the random variable V .

Therefore, having that,

F (k) =

∫ k

v=0

f(v)dv =
1

τ
exp
(
− v − ω

τ
− e−

v−ω
τ

)
dv (9)

where,
ω is the location parameter
τ is the scale/dispersion parameter
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Using the laws of indices on the expression for f(v) gives,

F (k) =

∫ k

v=0

exp
(
e−

v−ω
τ

)1

τ
e−

v−ω
τ dv (10)

Now, by letting,
p = −e−

v−ω
τ

it results to,

dp =
1

τ
e−

v−ω
τ dv

Using this substitution in equation (10), gives,

F (k) =

∫ k

v=0

epdp = ep

= exp
(
− e−

v−ω
τ

)
|kv=0

F (k) = exp
(
− e−

k−ω
τ

)
− exp

(
− eωτ

)
. (11)

Therefore given that;

F̄ (v) = 1− F (v)

F̄ (v) = 1 + exp
(
− eωτ

)
− exp

(
− e−

v−ω
τ

)
(12)

With F̄ (v), the survival function for the random variable V
as illustrated in equation (2) is given by:

S̄(v) =
δ
[
1 + exp

(
− eωτ

)
− exp

(
− e− v−ωτ

)]
1−

{
(1− δ)

[
1 + exp

(
− eωτ

)
− exp

(
− e− v−ωτ

)]} (13)

with the corresponding cumulative distribution function obtained from equation (3) as follows,

F (v) =
exp
(
− e− v−ωτ

)
− exp

(
− eωτ

)
1−

{
(1− δ)

[
1 + exp

(
− eωτ

)
− exp

(
− e− v−ωτ

)]} (14)

and a probability distribution function given as follows (as from equation (4),

f(v) =
δ
τ exp

(
− v−ω

τ − e
− v−ωτ

)[
1−

{
(1− δ)

{
1 + exp

(
− eωτ

)
− exp

(
− e− v−ωτ

)}}]2 (15)

where δ is the introduced shape parameter.
To show that the expression in equation (15) is a pdf (that is

∫∞
v=0

f(v)dv = 1), we simplify the function by letting

q = exp(−eωτ ).

which makes the denominator of the function in equation (15) to become,[
1− (1− δ)

{
1 + q − exp

(
− e−

v−ω
τ

)}]2
,

from which it gives,

1−
[
1−

{
exp
(
− e−

v−ω
τ

)}
+ q − δ + δ

{
exp
(
− e−

v−ω
τ

)}
− qδ

]2
,[{

exp
(
− e−

v−ω
τ

)}
− q + δ − δ

{
exp
(
− e−

v−ω
τ

)}
+ qδ

]2
,[{

exp
(
− e−

v−ω
τ

)}
(1− δ) + δ + qδ − q

]2
Therefore, expression in equation (15)can be written as:

f(v) =
δ

τ

[
e−

v−ω
τ exp

(
− e− v−ωτ

)[
exp
(
− e− v−ωτ

)
(1− δ) + δ + qδ − q

]2
]
, (16)

Hence having, ∫
f(v)dv = δ

∫
exp
(
− e− v−ωτ

)
1
τ e
− v−ωτ[

exp
(
− e− v−ωτ

)
(1− δ) + δ + qδ − q

]2 (17)
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From equation (17), by letting

p = −e−
v−ω
τ ,

and,

dp =
1

τ
e−

v−ω
τ dv,

for ease of integration, it gives∫
f(v)dv = δ

∫
epdp[

ep(1− δ) + δ + qδ − q
]2 (18)

By rearranging the denominator in equation (18), it gives,∫
f(v)dv = δ

∫
epdp[

(1− δ)(ep − q) + δ
]2 (19)

from which again by letting

z = (1− δ)(ep − q) + δ

then,

dz = (1− δ)epdp,

implying that

epdp =
dz

1− δ
.

Therefore, from equation (19), it gives,∫
f(v)dv =

δ

1− δ

∫
dz

z2
=

δ

(δ − 1)z

whose solution becomes,

δ

(δ − 1)z
=

δ

(δ − 1)
[
(1− δ)(ep − q) + δ

] ,
and when by taking the integration from v = 0 to k, it gives

=
δ

(δ − 1)
[
(1− δ)(ep − q) + δ

] ∣∣∣∣∣
k

v=0

(20)

The foregoing means that taking v = ∞ and also v = 0,
gives for v = ∞, ep = exp

(
− e− v−ωτ

)
= 1 and for v = 0,

ep = exp
(
− e− v−ωτ

)
= exp

(
− eωτ

)
= q.

Hence, the value for the integral from equation (20)
becomes:

δ

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

(1− δ)(q − q) + δ

]
,

δ

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

δ

]
,

δ

δ − 1

[ δ − 1 + q − qδ[
(1− δ)(1− q) + δ

]
δ

]
,

Since, δ− 1 + q− qδ can be factored as δ− 1 + q(1− δ) =
1(δ−1)−q(δ−1) = (1−q)(δ−1). Also, (1−δ)(1−q)+δ in the
denominator can be simplified as 1−q−δ+qδ+δ = 1−q+qδ,
then it gives,

δ

δ − 1

[ (1− q)(δ − 1)

δ[1− q + qδ]

]
=

1− q
1− q + qδ

. (21)

But, knowing that,

q = exp(−eωτ )

and since, ω>τ , then it follows that q→0. And therefore,
equation (21) approaches 1, that is,

1− q
1− q + qδ

→ 1,

hence f(v) is a pdf as required.

3.1.1. Expected Value of a Three Parameters Gumbel
Distribution

The derivation of the expected value of a three parameters
Gumbel distribution because the research cannot assume that
the location parameter is the mean since the measures of
location are mean, mode and median.

Given f(v) as the probability distribution function, the
expected value (E(V )) is obtained as;

E(v) =

∫
vf(v)dv

E(v) =

∫ ∞
−∞

v δτ exp
(
− v−ω

τ − e
− v−ωτ

)
dv[

1−
{

(1− δ)
{

1 + exp
(
− eωτ

)
− exp

(
− e− v−ωτ

)}}]2 (22)

E(v) = δ

∫ ∞
−∞

v.exp
(
− e− v−ωτ

)
1
τ e
− v−ωτ dv[

1−
{

(1− δ)
{

1 + exp
(
− eωτ

)
− exp

(
− e− v−ωτ

)}}]2 (23)

If we let
z = e−

v−ω
τ =⇒ln(z) = −v − ω

τ
=
−v
τ

+
ω

τ
=⇒v = ω − τ ln(z)
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then having that,

dz = −1

τ
e−

v−ω
τ dv

by substituting v, z, and dz in equation (23), gives

E(v) = −δ
∫

(ω − τ ln(z)e−zdz[
1−

(
(1− δ)(1− e−z + q)

)]2 (24)

where
q = exp

(
− eωτ

)
Therefore,

E(v) = −δ
∫

ωe−zdz[
1−

(
(1− δ)(1− e−z + q)

)]2 + (δτ)

∫
ln(z)e−zdz[

1−
(
(1− δ)(1− e−z + q)

)]2 (25)

The function E(v) have two terms which are integrated as follows, for the first term from equation (25), that is;

−δ
∫

ωe−zdz[
1−

(
(1− δ)(1− e−z + q)

)]2
letting p = (1− δ)(e−z − q) + δ then, dp = (1− δ)(−e−z) = (δ − 1)e−zdz implying that e−zdz = dp

δ−1 . This gives,

−δ
∫

ωe−zdz[
1−

(
(1− δ)(1− e−z + k)

)]2 =
−(δω)

δ − 1

∫
dp

p2
=
−(δω)

δ − 1

[1
p

]
=
−(δω)

δ − 1

[ 1

1− δ)(e−z − q) + δ

]
which is given as follows after re-substituting z

=
−(δω)

δ − 1

[ 1

(1− δ)(exp−e−
v−ω
τ − q) + δ

]∣∣∣∞
−∞

this gives the following result after taking the integral with the limits of v from −∞ to∞

=
−(δω)

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

−q(1− δ) + δ

]
=
−(δω)

δ − 1

[
−q(1− δ) + δ − [(1− δ)(1− q) + δ]

[(1− δ)(1− q) + δ][−q(1− δ) + δ]

]

the integral for the first term finally becomes
δω

(δq + δ − q)(1− q + δq)
(26)

For the second terms in equation (25), which is given as,

(δτ)

∫
ln(z)e−zdz[

1−
(
(1− δ)(1− e−z + q)

)]2 = (δτ)

∫
ln(z)e−z

[(1− δ)(e−z − q) + δ]2

]
Using integration by parts to integrate the function. And knowing that by applying the integration by parts, then wp−

∫
pdw

is applied to solve the function. Letting w = ln(z) giving dw = dz
z . Also if we let

dp =
e−zdz[

(1− δ)(e−z − q) + δ
]2

implying that

p =

∫
e−zdz[

(1− δ)(e−z − q) + δ
]2 =

−1

(δ − 1)[(1− δ)(e−z − q) + δ]
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this gives the integral result as ∫
ln(z)e−z

[(1− δ)(e−z − q) + δ]2

]
= wp−

∫
pdw

=
−ln(z)

(δ − 1)[(1− δ)(e−z − q) + δ]
+

1

δ − 1

∫
dz

z[(1− δ)(e−z − q) + δ]
(27)

Equation (27) shows that the function still requires integration by parts for the second term, that is

1

δ − 1

∫
dz

z[(1− δ)(e−z − q) + δ]
.

By letting

w =
1

[(1− δ)(e−z − q) + δ]

implying that
dw = −[(1− δ)(e−z − q) + δ]−2(δ − 1)e−z.

Also, by taking dp = dz
z we have p = ln(z). Therefore, it gives

1

δ − 1

[ ln(z)

[(1− δ)(e−z − q) + δ]
+ (δ − 1)

∫
ln(z)e−z

[(1− δ)(e−z − q) + δ]2

]
(28)

Replacing equation (28) in equation (27), it gives 0 implying that the function is indeterminate and therefore it is undefined.
The expected value is therefore given as;

E(v) =
δω

(δq + δ − q)(1− q + δq)

=
δω

[δexp(−eωτ ) + δ − exp(−eωτ )][1− exp(−eωτ ) + δexp(−eωτ )]
(29)

3.1.2. The Variance of a Three Parameters Gumbel Distribution
For the variance of the three parameters Gumbel distribution, recalling that, V ar(v) = E(v2) − [E(v)]2. The formular for

E(v) is already obtained in subsection 3.1.1. The E(v2) is then obtained as follows.

E(v2) = δ

∫ ∞
−∞

v2.exp
(
− e− v−ωτ

)
1
τ e
− v−ωτ dv[

1−
{

(1− δ)
{

1 + exp
(
− eωτ

)
− exp

(
− e− v−ωτ

)}}]2
E(v2) = δ

∫ ∞
−∞

v2.exp
(
− e− v−ωτ

)
1
τ e
− v−ωτ dv[

(1− δ)
(
exp(−e

−v−ω
τ ) − q

)
+ δ
]2

In subsection 3.1.1, having let q = exp
(
− eωτ

)
and z = e−

v−ω
τ =⇒v = ω − τ ln(z) hence, v2 = (ω − τ ln(z))2=⇒v2 =

ω2 − 2ωτln(z) + τ2[ln(z)]2. From z function, it gives

dz = −1

τ
e−

v−ω
τ dv

Therefore, obtaining,

E(v2) = δ

∫ ∞
−∞

v2.exp
(
− e− v−ωτ

)
1
τ e
− v−ωτ[

(1− δ)
(
exp(−e

−v−ω
τ ) − q

)
+ δ
]2

= −δ
∫ (

ω2 − 2ωτln(z) + τ2[ln(z)]2
)
e−zdz

[(1− δ)(e−z − q) + δ]2
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E(v2) = −δω2

∫
e−zdz

[(1− δ)(e−z − q) + δ]2
+ 2δωτ

∫
e−zln(z)dz

[(1− δ)(e−z − q) + δ]2
− δτ2

∫
e−z[ln(z)]2dz

[(1− δ)(e−z − q) + δ]2
(30)

As evidence in subsection 3.1.1, the first term of E(v2) from equation (30) which is∫
e−zdz

[(1− δ)(e−z − q) + δ]2
=

1

(δq + δ − q)(1− q + qδ)
.

Also, the integral for the second term, that is

δωτ

∫
e−zln(z)dz

[(1− δ)(e−z − q) + δ]2
= 0

as evidence from equations (27) and (28).
This means that we are only remaining with the integral solution of the third term of E(v2) in equation (30) which is given as

−δτ2
∫

e−z[ln(z)]2dz

[(1− δ)(e−z − q) + δ]2

to integrate this function, we apply integration by part (wp−
∫
pdw).

By letting w = (ln(z))2=⇒dw = 2ln(z)dz
z . Again, if we let,

dp =
e−zdz

[(1− δ)(e−z − q) + δ]2

implying that

p =

∫
e−zdz

[(1− δ)(e−z − q) + δ]2
=

−1

(δ − 1)[(1− δ)(e−z − q) + δ]

Therefore, having the wp−
∫
pdw for the function given as;∫

e−z[ln(z)]2dz

[(1− δ)(e−z − q) + δ]2
=

−[ln(z)]2

(δ − 1)[(1− δ)(e−z − q) + δ]
+

2

δ − 1

∫
ln(z)dz

z[(1− δ)(e−z − q) + δ]
(31)

Using integration by parts again in the second term of equation (31), by letting

w =
1

[(1− δ)(e−z − q) + δ]
=⇒dw = −[(1− δ)(e−z − q) + δ]2(δ − 1)e−z.

And, also letting

dp =
ln(z)dz

z
=⇒p =

[ln(z)]2

2
.

This gives,

2

δ − 1

∫
ln(z)dz

z[(1− δ)(e−z − q) + δ]
=

2

δ − 1

[ [ln(z)]2

2[(1− δ)(e−z − q) + δ]
+
δ − 1

2

∫
[ln(z)]2e−z

[(1− δ)(e−z − q) + δ]2

]
(32)

Replacing equation (32) in equation (31), gives 0 implying that the function is indeterminate and therefore it is undefined. The
E(v2) is therefore given as;

E(v2) =
δω2

(δq + δ − q)(1− q + qδ)
(33)

Therefore, V ar(v) = E(v2)− [E(v)]2 is obtained from equations (29) and (33) as folows;
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V ar(v) =
δω2

(δq + δ − q)(1− q + qδ)
−
[ δω

(δq + δ − q)(1− q + δq)

]2
=

δω2

(δq + δ − q)(1− q + qδ)
− δ2ω2

[(δq + δ − q)(1− q + δq)]2

=
δω2[(δq + δ − q)(1− q + δq)]− δ2ω2

[(δq + δ − q)(1− q + δq)]2

=
δω2

(
[(δq + δ − q)(1− q + δq)]− δ

)
[(δq + δ − q)(1− q + δq)]2

Replacing q gives us,

V ar(v) =
δω2

(
[(δexp(−eωτ ) + δ − exp(−eωτ ))(1− exp(−eωτ ) + δexp(−eωτ ))]− δ

)
[(δexp(−eωτ ) + δ − exp(−eωτ ))(1− exp(−eωτ ) + δexp(−eωτ ))]2

(34)

3.2. Maximum Likelihood Estimation for the Parameters

This subsection shows the process of estimating each of the
three parameters in a three parameters distribution namely; the
location parameters (ω), scale/dispersion parameter (τ) and
the shape parameter (δ) using maximum likelihood estimation

method. The maximum likelihood estimation method involves
three steps, (that is getting the likelihood function, the log of
the likelihood function and the derivative with respect to the
required parameter).

Considering the probability distribution function given in
equation (15), its likelihood function is given follows,

R =

k∏
i=1

f(vi)

=

k∏
i=1

δ

τ

[
exp
(
− vi−ω

τ − e
−vi−ω
τ

)[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]2
]

where R is the symbol used in this study to represent likelihood function

R(vi; δ, ω, τ) =
( δ
τ

)k exp
∑k
i=1

(
− vi−ω

τ − e
−vi−ω
τ

)[
exp

∑k
i=1 ln

[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]]2 (35)

The likelihood function R, can be expressed with a variable together with parameters to be estimated as shown in equation
(35), and its log-likelihood function which maximizes the parameters becomes

ln(R) = k
{
ln
( δ
τ

)}
+

k∑
i=1

[
−
(vi − ω

τ

)
− e−

(
vi−ω
τ

)]
−2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]
(36)

3.2.1. Parameters Estimation for δ
With the log likelihood function, the estimate for δ is

obtained by performing the partial derivative for the log
likelihood function with respect to δ and equating the result to
zero (that is, by computing ∂LnR

∂δ ). This is done by considering
on the terms in equation (36) containing δ because of the fact
that terms independent of δ definitely give a derivative result
of zero. In equation (36), the first term (that is, k

{
ln
(
δ
τ

)}
.

Differentiating with respect to δ as follows:

d = k
{
ln
( δ
τ

)}
then,

∂d

∂δ
=
τ

δ
.
k

τ
=
k

δ
(37)

And letting c to represent the second term with δ then,
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c = −2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]
,

which is differentiated with respect to δ as follows:
by letting,

p = 1− (1− δ)
[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
= 1− 1

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
+ δ
[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
Therefore, it gives,

dp

∂δ
=
[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
Now differentiating c with respect to p, gives,

dc

dp
=

k∑
i=1

(lnp) = 2

k∑
i=1

1

p
(38)

This leads to,

∂c

∂δ
= 2

k∑
i=1

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
p

(39)

Thus having the estimate of δ obtained from equations(37) and (39) as,

δ̂ =
∂ln(L)

∂δ
=
k

δ
− 2

k∑
i=1

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
p

= 0, (40)

where,

p = 1− (1− δ)
[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
3.2.2. Parameters Estimation for ω

The process of estimating the location parameter ω is shown
by the use of maximum likelihood estimate. By using the log
likelihood function in equation (36) and working out the partial
derivative while equating to zero, and proceed as follows:
Assuming that the term in the equation without ω have their
partial derivatives equals to zero hence leaving the study to
work out partial derivatives of only terms having ω as follows;

For the second term whereby there is

k∑
i=1

[
−
(vi − ω

τ

)
− e−

(
vi−ω
τ

)]
letting

r = −
(vi − ω

τ

)
= −vi

τ
+
ω

τ

This results to,

∂r

∂ω
=

1

τ
(41)

Also, by letting

s = e−
(
vi−ω
τ

)
and,

r = −
(vi − ω

τ

)
then

∂s

∂ω
=

1

τ
er =

1

τ
e−
(
vi−ω
τ

)
(42)

Combining ∂r
∂ω , ∂s∂ω , having the derivative of the second term

with respect to ω given as;

k∑
i=1

[1

τ
− 1

τ
e−
(
vi−ω
τ

)]
1

τ

k∑
i=1

[
1− e−

(
vi−ω
τ

)]
(43)

The third term, letting,

t = −2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]
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and by letting,
p = 1− (1− δ)

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
,

gives,

∂t

∂ω
= 2(1− δ)

k∑
i=1

[
exp
(
− e
(
− vi−ωτ

))
.e

(
− vi−ωτ

)
− eωτ .exp(−eωτ )

pτ

]
(44)

Combining ∂r
∂ω , ∂s

∂ω and ∂t
∂ω as given in equations (41), (42) and (44) respectively gives the maximum likelihood estimate for

ω as;

ω̂ =
∂ln(L)

∂ω

=
1

τ

k∑
i=1

[
1− e−

(
vi−ω
τ

)]
+ 2(1− δ)

k∑
i=1

[
exp
(
− e
(
− vi−ωτ

))
.e

(
− vi−ωτ

)
− eωτ .exp(−eωτ )

pτ

]
= 0 (45)

where,
p = 1− (1− δ)

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
3.2.3. Parameters Estimation for τ

The maximum estimator for τ is obtained by partially differentiating the log likelihood function given below with respect to τ
and equating to zero as follows.

ln(R) = k
{
ln
( δ
τ

)}
+

k∑
i=1

[
−
(vi − ω

τ

)
− e−

(
vi−ω
τ

)]
−2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]
The first term of the likelihood function is differentiated using chain rule as follows, let,

p = k
{
ln
( δ
τ

)}
therefore,

∂p

∂τ
=
−k
τ

(46)

For the second term of the log likelihood function, letting

m = −
(vi − ω

τ

)
,

∂m

∂τ
= (vi − ω)τ−1 = (vi − ω)τ−2 =

vi − ω
τ2

(47)

Again by letting r = e−
(
vi−ω
τ

)
, and first dealing with the term in the parenthesis, letting this term be m = −

(
vi−ω
τ

)
, it gives,

∂r

∂τ
= (er).

vi − ω
τ2

=
vi − ω
τ2

.e−
(
vi−ω
τ

)
(48)

Therefore, the derivative of the second term with respect to τ becomes,

k∑
i=1

[vi − ω
τ2

− vi − ω
τ2

.e−
(
vi−ω
τ

)]
1

τ2

k∑
i=1

[
vi − ω

][
1− e−

(
vi−ω
τ

)]
(49)

The third term of the function is,
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t = −2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)]
,

about which letting,

p = 1− (1− δ)
(
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

)
The function for t has two terms with parameter τ which are differentiated with respect to τ as follows.
For,

−exp
(
− e

−vi−ω
τ

)
,

letting
h = −e

−vi−ω
τ ,

and,
j =
−vi − ω

τ
,

then,
dh

dτ
=

d

dj
.
dj

dτ
= −et. vi − ω

τ2
= −e

−vi−ω
τ .

vi − ω
τ2

Hence,

d

dh
.
dh

dτ
= −eh.− e

−vi−ω
τ .

vi − ω
τ2

= exp
(
− e

−vi−ω
τ

)
.e

−vi−ω
τ .

vi − ω
τ2

(50)

The last term in the t function is exp(−eωτ ) for which is written by letting h = −eωτ and the power is written as j = ω
τ .

From which,
dh

dτ
=

d

dj
.
dj

dτ
= −et.− ω

τ2
=

ω

τ2
e
ω
τ ,

Hence,
d

dh
.
dh

dτ
= eh.

ω

τ2
e
ω
τ =

ω

τ2
exp(−eωτ )e

ω
τ (51)

Using equations (50) and (51), the derivative for the t function with respect to τ becomes,

∂p

∂τ
= −(1− δ)

[vi − ω
τ2

exp
(
− e

−vi−ω
τ

)
.e

−vi−ω
τ +

ω

τ2
exp(−eωτ )e

ω
τ

]
Because of equation (38), the final derivative for the third term in the log likelihood function with respect to τ is

∂t

∂τ
= −2(1− δ)

k∑
i=1

(vi − ω)exp
(
− e

−vi−ω
τ

)
.e

−vi−ω
τ + ω.exp(−eωτ )e

ω
τ

τ2p
= Q (52)

where,

p = 1− (1− δ)
[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
.

Therefore, the estimator for τ is given as follows from equations (46), (49) and (52) above

τ̂ =
∂ln(L)

∂τ
=
−k
τ

+
1

τ2

k∑
i=1

[
vi − ω

][
1− e−

(
vi−ω
τ

)]
+Q = 0 (53)

where Q is defined in equation (52). 4. Conclusion

Introducing a new parameter to an existing distribution
makes it more flexible and robust for application. In this
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research, a new parameter called the shape parameter was
introduced to the existing two parameter Gumbel distribution.
The introduced three parameters Gumbel distribution is
a probability distribution function which can be used in
modelling statistical data since it is more flexible. The
maximum likelihood estimates for the three parameters
namely shape (δ), location (ω) and dispersion (τ ) are efficient,
sufficient and consistent and this makes the function more
flexible and better for application.

5. Recommendation
The three parameters Gumbel distribution can be used

in modeling and analysis of normal data, skewed data and
extreme data since it will provide efficient, sufficient and
consistent estimates. For the purpose of future improvement
on a three parameters Gumbel distribution, future researches
can investigate the behaviour of its location parameter.
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