

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES MASTER OF SCIENCE IN APPLIED STATISTICS & COMPUTING

COURSE CODE: STA 8215
COURSE TITLE: TIME SERIES ANALYSIS

DATE: 30/1/2024 TIME: 0830-1130 HRS

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS

- i) Answer any FOUR Questions
- ii) Show all the workings clearly
- iii) Do not write on the question paper

QUESTION ONE (15 MARKS)

- a) Suppose that annual sales (in millions of dollars) of the Acme Corporation follow the AR (2) model with $X_t = 5 + 1.1X_{t-1} 0.5X_{t-2} + e_t$ and , $\sigma_e^2 = 2$
- i) If sales for 2005, 2006, and 2007 were \$9 million, \$11 million, and \$10 million, respectively, forecast sales for 2008 and 2009.
- ii) Show that $\Psi_1 = 1.1$ for this model.
- iii) Calculate 95% prediction limits for your forecast in part (a) for 2008.
- iv) If sales in 2008 turn out to be \$12 million, update your forecast for 2009. (7 Marks)
- b) Find the ACF and PACF and plot the ACF, ρ_k for k=0,1,2,3,4,5 for each of the following models given that $e_t \sim WN(0, \sigma_e^2)$:

i)
$$X_t - 0.5X_{t-1} = e_t$$

ii)
$$X_t + 0.98X_{t-1} = e_t$$

iii)
$$X_t - 1.3X_{t-1} + 0.4X_{t-2} = e_t$$

iv)
$$X_t - 1.2X_{t-1} + 0.8X_{t-2} = e_t$$

Verify whether each of the models is stationary and/or invertible.

(8 Marks)

QUESTION TWO (15 MARKS)

- a) Consider the following model: $(1-B)^2 X_t = (1-0.3B-0.5B^2)e_t$.
 - i) Is the model for X_t stationary? why?
 - ii) Let $W_t = (1 B)^2 X_t$ Is the model for W_t stationary? Why?
 - iii) Find the ACF for the second order difference W_t .

(5 Marks)

b) For each of the following modes:

i)
$$(1 - \phi_1 B)(X_t - \mu) = e_t$$

ii)
$$(1 - \phi_1 B - \phi_2 B^2)(X_t - \mu) = e_t$$

iii)
$$(1 - \phi_1 B)(1 - B)X_t = (1 - \theta_1 B)e_t$$

I) Find the *l*-step ahead forecast $\widehat{X_t}$ (*l*) of X_{t+l} .

II) Find the variance of the l-step ahead forecast error for l=1,2 and 3. (10 Marks)

QUESTION THREE (15 MARKS)

- a) Consider the IMA (1,1) model $(1 B)X_t = (1 \theta B)e_t$.
- i) Write down the forecast equation that generates the forecasts
- ii) Find the 95% forecast limits produced by this model.
- iii) Express the forecasts as a weighted average of the previous observations. (6 Marks)
- b) Assume that 100 observations from an AR (2) models $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + e_t$ gave the following sample ACF: $\widehat{\rho_1} = 0.8$, $\widehat{\rho_2} = 0.5$, and $\widehat{\rho_1} = 0.4$. Estimate ϕ_1 and ϕ_2 . (5 **Marks**)
- c) For the model $(1 0.2B)(1 B)X_t = (1 0.5B)e_t$, evaluate the first four ψ weights of the model when expressed as an $MA(\infty)$ model. Is the behavior of the ψ weights of the model what you would expect, given the type of model?

(4 Marks)

QUESTION FOUR (15 MARKS)

- a) A sales series was fitted by the ARIMA (2,1,0) model $(1 1.4B 0.7B^2)(1 B)X_t = e_t$ where $\sigma_e^2 = 58000$ and the last 5 observations are 560,580, 640, 770 and 800.
- i) Calculate the forecasts of the next 3 observations.
- ii) Find the 95% forecast limits for the forecasts in (a).
- iii) Find the eventual forecast function.

(8 Marks)

b) Assume that 100 observations from an ARMA (1,1) model, $X_t - \varphi_1 X_{t-1} = e_t - \theta_1 e_{t-1}$ gave the following estimates: $\widehat{\sigma}_x^2 = 10$, $\widehat{\rho_1} = 0.523$, and $\widehat{\rho_2} = 0.418$. Find initial estimates for φ_1 , θ_1 and , σ_e^2 .

(7 Marks)

QUESTION FIVE (15 MARKS)

a) Consider an AR (2) model $(1 - \phi_1 B - \phi_2 B^2)(X_t - \mu) = e_t$, where $\phi_1 = 1.2$, $\phi_2 = -.6$, $\mu = 65$, and $\sigma_e^2 = 1$. Suppose we have the observations $X_{76} = 60.4$, $X_{77} = 58.9$, $X_{78} = 64.7$, $X_{79} = 70.4$, and $X_{80} = 62.6$.

- i) Forecast X_{81} , X_{82} , X_{83} , and X_{84} .
- ii) Find the 95% forecast limits for the forecasts in (a).
- iii) Suppose that the observations at t=81 turns out to be $X_{81} = 62.2$. Find the updated forecasts for X_{82} , X_{83} , and X_{84} . (8 Marks)
- b) Consider the following processes:

i)
$$(1-B)^2 X_t = e_t - 0.81e_{t-1} + 0.3e_{t-2}$$

ii)
$$(1 - B)X_t = (1 - 0.5B)e_t$$

Express each of the above processes in the AR representation by actually finding and plotting the π weights.

(7 Marks)

QUESTION SIX (15 MARKS)

- a) Consider the model $(1 0.43B)(1 B)X_t = e_t$ and the observations $X_{49} = 33.4$, and $X_{50} = 33.9$.
- i) Compute the forecast $X_t(l)$, for l = 1, 2, ..., 10, and their 90% forecast limits.
- ii) What is the eventual forecast function for the forecasts made at t=50?
- iii) At time t=51, X_{51} became known and equaled 34.1. Update the forecasts obtained in (a). (9 Marks)
- b) The following data was obtained for a process X_t

t 1 2 3 4 5 6
$$X_t$$
 29.33 19.98 29.00 31.03 32.68 30.12

Find the sample autocorrelation functions: r(1), r(2), r(3) and r(4). (6 Marks)