

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS MASTER SCIENCE IN APPLIED STATISTICS

COURSE CODE: STA 8212/ECS 8204 COURSE TITLE: TEST OF HYPOTHESIS

DATE: 2/2/2024

TIME: 1430-1730 HRS

INSTRUCTIONS TO CANDIDATES Answer question **ONE (compulsory)** and any other **TWO** questions

Q1 (30 MARKS)

b)

a) Define the following terms giving an example in each case:

i.	Power of a test	(2 marks)
ii.	P value	(2 marks)
iii.	Randomized test	(2 marks)
iv.	Generalized likelihood ratio test	(2 marks)
v.	Uniformly most powerful test	(2 marks)
State	e the Newman – Pearson lemma	(2 marks)
A fo	od processing company packages honey in small gl	lass jars. Each

- c) A food processing company packages honey in small glass jars. Each jar is supposed to contain 5 litres of honey. Previous experience suggests that the volume *X*, of a randomly selected jar of the company's honey is normally distributed with a known variance of 2.5. Derive the generalized likelihood ratio test for testing, at a significance level of $\alpha = 0.05$, the null hypothesis H_0 : $\mu = 5$ against the alternative hypothesis H_1 : $\mu \neq 5$ (4 marks)
- d) A study was taken to establish whether there is a difference in the mean salaries between the male and female employees. The salaries in Kshs 1000 for the randomly selected employees by gender are shown below. Test the appropriate hypotheses using $\alpha = 0.05$ significance level.

Male	65	61	45	49	48	46	61	56	48	53	68	48
Female	46	50	39	40	53	49	41	53	43			

(3 marks)

e) Let X and Y be two independently distributed random variables with

distributions X ~N $[\mu_1, \sigma_1^2]$ and Y~ $[\mu_2, \sigma_2^2]$ respectively.

Let $x_1 \; x_2 \; \; x_m$ be a random sample of size m from X and $y_1, \; y_2, \;, \; x_n$ be

Another independent random sample of size n from Y.

Derive the likelihood ratio test for testing H₀: $\mu_2 = \mu_1$ against H₁: $\mu_1 \neq \mu_2$, Assuming $\sigma_1^2 = \sigma_2^2 = \sigma^2$ [8marks]

f) The following statistics were obtained from data drawn from two independent populations X and Y which are normally distributed as follows: X ~N [μ₁,σ_m²]
and Y~ [μ₂,σ_n²]

$$\overline{X} = 1.02, \sum_{i=1}^{m} (X_i - \overline{X})^2 = 2.44, m = 11$$

 $\overline{Y} = 1.66, \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = 4.23, n = 13$

Test H₀: $\mu_1 = \mu_2$ against H₁: $\mu_1 \neq \mu_2$. Use $\infty = 5\%$ [3 marks]

Q2 (20 MARKS)

a) Consider the accompanying data on breaking load (kg/25-mm width) for various fabrics in both unabraded condition and abraded condition

Fabric									
	1	2	3	4	5	6	7	8	
U	36.4	55.0	51.5	38.7	43.2	48.8	25.6	49.8	
А	28.5	20.0	46.0	34.5	36.5	52.5	26.5	46.5	

Perform the Wilcoxon signed-rank test to compare the breaking load by fabric type. (8 marks)

b) A physician is interested in the effect of an anesthetic on reaction times. Two groups are compared, one with (A) and one without (B) taking the anesthetic. Subjects had to react on a simple visual stimulus. Reaction times are not normally distributed in this experiment, so data is analyzed with the Mann-Whitney U-Test (Wilcoxon Rank Sum) for ordinal scaled measurements. Are the reaction times different among the two groups?

Reaction													
Time	131	135	138	138	139	141	142	142	142	143	144	145	156
Group	В	А	В	В	А	В	В	А	В	В	А	В	В
Reaction													
Time	158	165	167	171	178	191	230	244	245	256	267	268	289
Group	А	А	В	А	А	В	В	А	А	А	А	А	А
											(1	12 m	arks)

Q3 (20 MARKS)

Five teaching methods were used to teach a Statistics course. Students were randomly assigned to the methods and their scores at a CAT are given below: TEACHING

METHOD									
Ι	II	III	IV	V					
12	21	26	22	10					
30	21	29	26	13					
15	15	28	17	16					
22	28	22	19	11					
19	11	25	27	30					
14	22	20	26	25					

Are the teaching methods different? Use the parametric approach at $\alpha = 0.05$ (20 marks)

Q4 (20 MARKS)

a) A researcher is concerned about the level of knowledge possessed by university students regarding Kenya history. Students completed a high school level Kenya history exam. The course for the students was also recorded. The data is recorded below for 32 students. Test the hypothesis that the level of knowledge of Kenya history is independent of the student's course. Use the non-parametric approach.

Education	Business	Social Science	Fine Arts
62	72	42	80
81	49	52	57
75	63	31	87
58	68	80	64
67	39	22	28
48	79	71	29
26	40	68	62
36	15	76	45

(8 marks)

a) Let x_1, x_2, \dots, X_n be a random sample from a normal variable X with

mean μ and variance σ^2 , where both μ and σ^2 are unknown.

Derive the test statistic for testing H₀: $\sigma^2 = \sigma_0^2$, against H₁: $\sigma^2 \neq \sigma_0^2$

[8 marks]

 b) A random sample of n = 7 observations from a normal population produced the following measurements: 4, 0, 6, 3, 3, 2, 5, 9. Do the data provide sufficient evidence to indicate that $\sigma^2 > 1$? Test using $\infty = 0.05$ [4 marks]

Q5 (20 MARKS)

- a) (i) Let (x_1, y_1) , (x_2, y_2) (x_n, y_n) be a random sample of size n from the bivariate normal population. Derive the test statistic for testing the hypothesis H_0 : $\ell = 0$ against H_1 : $\ell \neq 0$, where ℓ is the correlation co-efficient between X and Y. [8 marks]
 - (ii) Use the test statistic derived in (a) to test the hypothesis H₀: $\ell = 0$ against H₁: $\ell \neq 0$ at $\infty = 5\%$ if the observations are (33, 24), (60, 34),

(19, 64) (19, 24), (39, 34), assuming this sample is drawn from a bivariate

normal population.

[4 marks]

b) Twenty test areas were given different concentrations of fertilizer and the resulting crop yield weighed. The data is given below:

Concentration g/L

(x)	10.2 10.6 11.2 11.6 12.2 12.6 13.2 13.6 14.2 14.6	
Crop weight kg (y)	27.2 19.6 28.2 30.6 23.2 32.6 20.2 28.6 31.2 27.6	
Concentration g/L		
(x)	15.2 15.6 16.2 16.6 17.2 17.6 18.2 18.6 19.2 19.6	
Crop weight kg (y)	20.2 24.6 30.2 27.6 36.2 24.6 34.2 30.6 25.2 37.6	

a) Determine the regression equation and perform a test of hypothesis on the slope.

(4 marks)

b) Compute the *Pearson product moment correlation coefficient* and perform a test of hypothesis on it. (4 marks)