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QUESTION ONE (20MARKS) 

a. Define the following terms 

i. ꝺ-field         

 (2marks) 

ii. Burel-field         (2marks) 

b. Proof that a ꝺ –field is a monotone field and conversely  (4marks) 

c. What is meant by the term indicator function of a set A   (2marks) 

d. Proof the following properties of indicator functions:     

i. If ACB, then IA ≤ IB       (4marks) 

ii. I(AUB) = IA + IB – IAB       (2marks) 

iii. IA
C = 1 – IA     (2marks) 

iv. IAB = IA IB     (2marks) 

QUESTION TWO (20 MARKS) 

Let (Ω, Ƒ, μ) be a measure state and let (fi)i 
∞=1be measurable functions from Ω 

to R such that fi↑ f a.e and ∫f1dμ > - ∞, then ∫fidμ↑∫fdμ.  

Proof                                                    ( 20marks) 

QUESTION THREE (20MARKS) 

a. Giving examples distinguish between  

i. Convergence almost strictly      (4marks) 

ii. Convergence in probability      (4marks) 

iii. Convergence in Lp        (4marks) 

iv. Convergence in Lq        (4marks) 

b. State the Burel _Catelli Lemma                (4marks) 

QUESTION FOUR (20MARKS) 

a. Let f be a non-negative measurable function and t>0. Then (f>t) = [wϵΩ: 

f(w) > t] μ({f>t}) ≤ t-1 ∫fdu.  

Proof          (4marks) 

b. Let (X,x,μ) and (Y,y,v) be finite measure spaces and let  

F = {ECXxY:∫∫1E(x,y)dμ(x)dv(y)=∫∫1E(x,y)dv(y)dμ(x) then XxyCF.  

Proof                                         (6marks) 

c. Let F:R→R be non-constant, right continuous, and a non-decreasing dF(a,b) 

= F(b)-F(a).  

Proof          (10marks) 

/END/ 


