

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE: MAT 8104

COURSE TITLE: TOPOLOGY I

DATE: DURATION:

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **TWO** questions

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE (30 MARKS)

- a) Let (X,d) be a metric space, show that $\forall x, y, z \in X$, $|d(x,z) d(y,z)| \le d(x,y)$. (3 marks)
- **b)** Let (X,T) be a topological space and let $A \subset X$, show that $\overline{A^c} = (A)^c$. (3 marks)
- c) Let f be a continuous function from a topological space X into \mathbb{R} . Let a be a real number and let $A = \{x \in X : f(x) = a\}$, verify that a is closed in X. (3 marks)
- **d)** In the usual topology of \mathbb{R} , show that $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is not compact using open

covers. (4 marks)

- e) Using only the definition of path connected set, show that \mathbb{R}^* is not path connected. (4 marks)
- f) Show that the plane \mathbb{R}^2 with the usual topology satisfies second axiom of countability. (3 marks)
- g) Show that the class $C(X,\mathbb{R})$ of all real valued continuous functions on a completely regular T_1 -space X separates points. (4 marks)
- h) Let X be a Hausdorff space, show that every convergent sequence in X has a unique limit.(6 marks)

QUESTION TWO (15 MARKS)

- a) Let \mathbb{R} be endowed with its standard topology, find the closure of \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$. (3 marks)
- b) Define a Hausdorff property hence show that Hausdorff is a topological property. (5 marks)
- c) Let X and Y be two topological spaces, show that if $X \times Y$ is compact, then X and Y are also compact (4 marks)
- d) Show that any subspace (Y, τ_Y) of a first countable space (X, τ) is also first countable. (3 marks)

QUESTION THREE (15 MARKS)

a) Let (X,d) be a metric space. Let r>0 and let x∈ X. We denote the open ball in X of centre x and radius r by B(x,R) while the closed ball in X of centre x and radius r is denoted by B_c(x,r).
 (3 marks)

b) Let X be a non-empty set. Let $a \in X$ be fixed and set $T = {\phi} \cup {U \subset X : a \in U}$

i. Is T Hausdorff (2 marks)

ii. Find $\{a\}$ (2 marks)

iii. Show that a completely regular space is regular. (4 marks)

c) Show that a discrete space X is separable if and only if X is countable. (5 marks)

QUESTION FOUR (15 MARKS)

a) Let X be a non-empty set, define a map on $X \times X$ by $d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$

i. Let r>0 and let $x \in X$, find the open ball B(x,r) and the close ball $B_c(x,r)$. (3 marks)

ii. Find the sphere S(x,r). (2 marks)

b) Show that every subset in a discrete metric space is open. (2 marks)

c) Deduce that every subset in a discrete metric space is closed. (1 mark)

d) Let A be any subset of a second countable space X, prove that if \$\mathcal{H}\$ is an open cover of A, then \$\mathcal{H}\$ is reducible to a countable cover.
(4 marks)

e) Let τ be the coffinite topology on any set X. Show that (X, τ) is separable. (3 marks)