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QUESTION ONE (20MARKS)

a) Define a complete metric space and hence show that R"is a complete metric

space. 10marks

b) Define strong and weak convergence of a sequence and hence show that the
strong convergence of a sequence (Xn) implies weak convergence with the
same limit. 5marks

) Let ae R’ Define f:R*—>R by f(x)=(xa) forallxe R’.Show that f isa

bounded linear functional with || f||=|a] 5marks

QUESTION TWO (20MARKS)

a) Let X be a non-empty metric space. Suppose that X is complete and let
T : X — X be a contraction on X .Show that T has one fixed point 10marks

b) Define an isomorphism of a normed space and show that the dual of R" is
R" 10marks.

QUESTION THREE (20MARKS)

a) Define a bounded linear transformation and hence show that an integral

b
operator defined by TX(t)zj X(t) dx Vv x,yeC is linear and

a [a.b]
bounded
6marks
b) Define a compact metric space and hence show that every closed subset of a
compact metric space is compact 6marks

c) Show that every bounded linear functional f on a Hilbert space H can be

represented in terms of inner product namely f (x)=(x,z) where z depends

on f and has norm ||z|=| f |- 8 marks

QUESTION FOUR (20MARKS)

a) Define
i.  Normed linear space 2marks
ii.  Inner product space 2marks
iii. =~ Weak*convergence Imark
b) Show that |x+ y||2 = ||X||2 +||y||2 if x Ly 3marks



c) Determine whether the metric space (X,d) where X ={1,neN} is
n

compact 2marks

d) Let X be a non-empty complete metric space, nonmeager and X ;«r&UAk
k#1

Show that at least one A, contains a nonempty open subset. 10marks



