

MAASAI MARA UNIVERSITY

MAIN EXAMINATION 2023/2024 ACADEMIC YEAR MASTER OF SCIENCE FIRST SEMESTER EXAMINATIONS

FOR

THE DEGREE OF MATER OF SCIENCE IN PURE MATHEMATICS

MAT 8103: FUNCTIONAL ANALYSIS 1

DATE:	TIME:

DURATION: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains **FOUR** (4) questions.
- 2. Answer any THREE (3) questions.
- 3. Do not forget to write your Registration Number.

QUESTION ONE (20MARKS)

- a) Define a complete metric space and hence show that \mathbb{R}^n is a complete metric space. **10marks**
- b) Define strong and weak convergence of a sequence and hence show that the strong convergence of a sequence (x_n) implies weak convergence with the same limit. **5marks**
- c) Let $a \in \mathbb{R}^3$. Define $f : \mathbb{R}^3 \to \mathbb{R}$ by $f(x) = \langle x, a \rangle$ for all $x \in \mathbb{R}^3$. Show that f is a bounded linear functional with ||f|| = ||a|| **5marks**

QUESTION TWO (20MARKS)

- a) Let X be a non-empty metric space. Suppose that X is complete and let $T: X \to X$ be a contraction on X. Show that T has one fixed point **10marks**
- b) Define an isomorphism of a normed space and show that the dual of \mathbb{R}^n is \mathbb{R}^n **10marks.**

QUESTION THREE (20MARKS)

a) Define a bounded linear transformation and hence show that an integral operator defined by $Tx(t) = \int_a^b x(t) \, dx \quad \forall \ x,y \in C_{[a,b]}$ is linear and bounded

6marks

- b) Define a compact metric space and hence show that every closed subset of a compact metric space is compact 6marks
- c) Show that every bounded linear functional f on a Hilbert space H can be represented in terms of inner product namely $f(x) = \langle x, z \rangle$ where z depends on f and has norm ||z|| = ||f||. 8 marks

QUESTION FOUR (20MARKS)

a) Define

i. Normed linear space **2marks** ii. Inner product space **2marks** iii. Weak*convergence **1mark** b) Show that $||x+y||^2 = ||x||^2 + ||y||^2$ if $x \perp y$ **3marks**

- c) Determine whether the metric space (X,d) where $X = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ is compact **2marks**
- d) Let X be a non-empty complete metric space, nonmeager and $X \neq \bigcup_{k \neq 1}^{\infty} A_k$. Show that at least one A_k contains a nonempty open subset. **10marks**