

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS AND PHYSICAL SCIENCES BACHELOR OF SCIENCE (PHYSICS)

COURSE CODE: PHY 3115-1 COURSE TITLE: PHYSICS LABORATORY V

 DATE: 4/6/2023
 TIME: 0830 - 1030 HRS

 INSTRUCTIONS
 INSTRUCTIONS

1 Answer question **ONE** and any other **TWO** questions in **section B**

2 Use of sketch diagrams where necessary and brief illustrations are encouraged.

3 Read the instructions in the answer booklet keenly and adhere to them.

4 This paper contains **FOUR** printed pages (please turnover).

SECTION A QUESTION ONE (20 MARKS)

a) Define the following terms	
i) Interference	(1mk)
ii) Reflection	(1mk)
b) A common base transistor amplifier has an input resistance of 20	
Ω and an output resistance of 100 k Ω . The collector load is 1k Ω . If	
a signal of 500 mV is applied between the emitter and base, find	
the voltage amplification. Assume α_{ac} to be 1.	(4mks)
c) An n-p-n transistor at room temperature has its emitter	
disconnected. A voltage of 5 V is applied between the collector and	
base. With collector positive, a current of 0.2 μ A flow	s. When the
base is disconnected and the same voltage is applied between the	
collector and emitter, the current is found to be 20 M	l when the
collector current is 1 mA.	
i) α,	(2mks)
ii) I _E	(2mks)
iii) I _B	(2mks)
d) In the Michelson interferometer, three conditions are essential to	
obtain interference fringes. State them.	(3mks)
e) Through what distance must the movable mirror of a Michelson	
interferometer be displaced for 4500 fringes of red cadmium line	

e) Through what distance must the movable mirror of a Michelson interferometer be displaced for 4500 fringes of red cadmium line to cross the center of the field of view given that the wavelength of the source is 6550x10⁻¹⁰ m (3mks)

f) State TWO conditions for interference (2mks)

SECTION B

QUESTION TWO (10 MARKS)

- a) State THREE applications of JFETs(3mks)b) List TWO advantages of FETs over BJTs(2mks)
- c) With the help of diagrams differentiate between an N-channel and a P-channel JFET. (2mks)
- d) Explain **THREE** differences between MOSFETs and BJTs (3mks)

QUESTION THREE (10 MARKS)

a) An NPN transistor is used in a switching circuit as shown in figure 1 below. Given that Beta value=125, $R_L = 700 \Omega$, $R_B = 50 K\Omega$ and $V_{CE} = 0$.

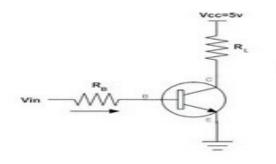


Figure 1

Calculate

i) Collector current **I**_C

(2mks)

- ii) Base Current I_B (2mks)
- b) With the help of diagrams, briefly describe three types of NPN or PNP transistor configurations. (6mks)

QUESTION FOUR (10 MARKS)

a) In a laboratory experiment Gilbert arranged his apparatus as shown in Figure 2 below;

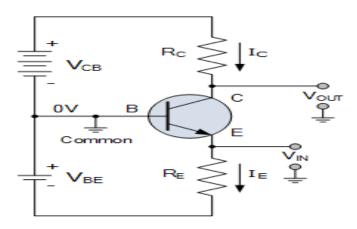


Figure 2.

Study the diagram and answer the questions that follow

i) With a reason name the type of transistor configuration above (1mk)

ii) In terms of doping differentiate between the parts labelled B, E and C (3mks)

iii) Gilbert realized that the amplification factor of the circuit above is unity. For a reason explain another transistor configuration connection that you would suggest to him in order to amplify small AC signals better.

(2mks)

b) In a common base connection, the emitter current is 1mA. If the emitter circuit is open, the collector current is 50 μ A. Find the total collector current.

Given that α = 0.92.

(2mks)

c) In Young's double-slit experiment, why do we use monochromatic light? if white light is used, how would the pattern change? (2mks)

/END/