

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATION 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE:MAT 1104 COURSE TITLE: FOUNDATION OF PURE MATHEMATICS

DATE: 30/1/2024

TIME: 0830-1030 HRS

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains FOUR (4) questions
- 2. Answer question ONE (1) and any other TWO (2) questions
- 3. Do not forget to write your Registration Number.

This paper consists of **FOUR** printed pages. Please turn over

QUESTION ONE (30 MARKS)

a)) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7\}$, and			
	$C = \{2, 4, 6, 8, 10\}, \text{ find};$			
	i.	$(A \cup B)^c$	[2 marks]	
	ii.	$(B \cap C) \cap A$	[2 marks]	
	iii.	$A^{c} \setminus (C \setminus B)^{c}$	[3 marks]	
b)	Test th	ne validity of the following arguments;		
		If it rains, Erick will be sick.		
		Erick was not sick.		
		It did not rain.	[4 marks]	
c)	Prove	that $(B \lor \sim A) \land A = A \land B$.	[4 marks]	
d)	For the complex number $z = 3 + 4i$ find;			
	i.	Modulus of z	[1 mark]	
	ii.	Argument of z	[2 marks]	
	iii.	Represent the complex number in an argand diagram.	[2 marks]	
e)	Prove	by contradiction that $\sqrt{2}$ is not a rational number.	[5 marks]	
f)	Which	of these are propositions? What are the truth values of those are propos	itions? [5 marks]	
	a. b.	Do not pass bye $x + 1 = 5$ if $x = 1$		
	с.	Donald trump won the Us elections in the year 2020 let p and q be the		

propositions.

QUESTION TWO-20 MARKS

- a) Translate the following English sentence into a logical expression and determine its validity, "you can access laboratory only if you are not a science student and you are a second year student". [4 marks]
 b) Let Z = ⁱ⁻¹/_{2i+3}, find;
 - i.Inverse of Z[4 marks]ii. Z^5 [4 marks]

- c) A survey of graduate students at the University of Florida's film school revealed the following information;
 - 51 admire Moe,
 - 49 admire Larry,
 - 60 admire Curly,
 - 34 admire Moe and Larry,
 - 32 admire Larry and Curly,
 - 36 admire Moe and Curly,
 - 24 admire all three of the Stooges,
 - 1 admires none of the Three Stooges.
 - i. How many people were surveyed?
 - ii. How many admire Larry and Curly only?
 - iii. How many admire Moe and Curly only?
 - iv. How many admire Moe and Larry only?
 - v. How many admire exactly 2 stooges?
 - vi. How many admire at least 2 stooges?
 - vii. How many admire exactly one of the Stooges? [8 marks]

QUESTION THREE - 20 MARKS

a. Given U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8}, B = {1, 3, 4, 5, 7}, C = {7, 8}, find

i.) A ∩ B
ii.) (A ∩ C) ∩ (A ∪ B)
b. If A = {0, 1, 2} and B = {c}, find A × B

a) Show that if n is a positive integer, then 1+2+3......+n = ∑ⁿ_{i=1} i = n(n+1)/2. [7 marks]
b) Express the Boolean expression E = ((xy)`z)`+((x`+z)(y`+z`))` in Sum of product form. [7 marks]

QUESTION FOUR - 20 MARKS

- a) Find the power set of A={1,2,3}. [2 marks]
 b) Using a carefully constructed truth table, show that the compound propositions (p→q)∧(q→p) and p↔q are logically equivalent. [5 marks]
- c) Using Boolean laws of algebra of logic, show that $\sim (p \lor q) \lor (\sim p \land q) = \sim p.$ [4 marks]

	product is even, then m is even or n is even.	[5 marks]
e)	Prove by contrapositive that if m and n are any integers such that their	
	consecutive integers, is equal to the sum of those integers.	[4 marks]
d)	Prove by deduction that the difference between two squares of any two	

END