

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 2112

COURSE TITLE: CHEMISTRY MATHEMATICS I

DATE: 13/12/2023 TI INSTRUCTIONS TO CANDIDATES

- TIME: 8:30 10:30 AM
- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. All Examination Rules Apply.

QUESTION ONE (30mks)

- a) Define the following terms:
 - i) Confidence limit
 - ii) Confidence interval
 - iii) Limit of detection.

(3mks)

- b) If the optical absorbance (A) increases from 0.65 to 1.35 during a reaction. What is ΔA . (2mks)
- c) A chemist is making a species that requires three steps. The steps give 66%, 50% and 95% yields respectively. What is the overall percentage yield for this synthesis given that? Overall Yield = $\prod_{n=1}^{3} Yield \ of \ step \ i$

(2mks)

- d) In the esterification reaction $CH_3OH + CH_3COOH \rightarrow CH_3COOCH_3 + H_2O$. If the theoretical yield of the ester based on the amount of starting masses is 0.2g and the experimental yield is 0.013g. Calculate the percentage yield. (2mks)
- e) In an experiment, the pressure of a gas is monitored as the temperature is changed at constant volume and amount of gas. The following relationship was established: P = 0.034T.
 - i) Identify the variables and coefficients in the equation
 - ii) What is pressure a function of
 - iii) Given that T = 343 what is the value of P (4mks)
- f) Consider the ideal gas equation PV = nRT, express the temperature as a function of pressure. (2mks)
- g) The equation for a straight line is y = mx + c. Define the terms in the equation. (3mks)

- h) Solve the following simultaneous equations: y + x = 5 and 2y + x = 1 (3mks)
 i) What is the other form of Log (xy) (1mk)
- j) Use the product rule to determine dy/dx of $y = x^2 Sinx$.
- k) Use the quotient rule to find dy/dx of $y = x^3/e^{3x}$ (3mks)
- I) Find dy/dx of the expression $y = lnx^{3k}$.

QUESTION TWO (20mks)

- a) Use the quadratic formula to solve the equation $3x^2 + 5x + 2$. (3mks)
- b) A hydrogen atom has a diameter of 106 pm. Calculate
 - i) Its circumference
 - ii) Area
 - iii) Volume

(5mks)

(3mks)

(2mk)

- c) Differentiate the following functions:
 - i) $Y = x^3$
 - ii) $Y = 2x^{-4} + x^3 + X + 5$
 - iii) $Y = x^{1/4}$
 - iv) Sin X
 - v) Cos X

- (6mks)
- d) In an X-ray crystallography the Bragg relates the distance d between successive layers in a crystal. The wavelength of the x-rays, λ an integer n and the angle through which the x-rays are scattered θ is given by the equation: $\lambda = 2d/n \sin 3\theta$. What is the rate of change of λ with θ . (4mks)
- e) Differentiate y with respect to θ in y = cos k θ (2mks)

QUESTION THREE (20mks)

- a) Differentiate the following functions with respect to x:
 - i) $Y = e^{2x}$
 - ii) $Y = e^{-2\beta h CBx}$
 - iii) Y = dx/x
 - iv) $y = e^{-1/3}$
- b) Differentiate the following using the product rule:
 - $Y = x \ln x$ i)
 - ii) $Y = 6e^2Cos x$
- c) Use the quotient rule to differentiate the following
 - Y = sin x/3 lnxi)

ii)
$$Y = x/e^{2x}$$
 (6mks)

d) Use the chain rule to differentiate $y = (x^2 + 2)^3$ using the chain rule (3mks)

QUESTION FOUR (20mks)

a) Find the integrals of the following:

i)
$$X^2$$

ii) $2x + 6x^2$
iii) $x(x+3)$ (4mks)
b) Find the integral of $x^2 + 2x^3 - 4x^4/x^3$ (3mks)
c) Find the following:
i) $\int e^{6x} dx$
ii) $\int (e^x + 4e^{-3x}) dx$
iii) $\int 9e^{6z} dz$ (6mks)

d) Find the following:

i) $\int \cos(4x) dx$ ii) $\int 6\sin(3x)dx$ (4mks)

(6mks)

(5mks)

e) A curve of gradient 4x⁵ passes through the point (1,2), what is the full equation of the line.
 (3mks)

/END/